Gonzalez-Calle A, Weiland J D
Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA and Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:6182-6185. doi: 10.1109/EMBC.2016.7592140.
Retinal prostheses provide the capability to blind patients to detect motion and locate large objects. To avoid activating axons of passage, which can create streak-like perceptions, long pulse stimulation can be used to bypass axons and achieve focal retinal activation. Safety is a concern because long pulses require more charge than short pulses to elicit a response from neural tissue. Future implants will require smaller electrodes to improve resolution, but increased charge density may result, which is another safety concern. We developed a method to study the effects of electrical stimulation in the retina in real time using OCT (Optical Coherence Tomography) imaging combined with micropositioning of a stimulating electrode over the retina in an animal model. When using a 250-micron diameter electrode and stimulating for 30 minutes (frequency: 333 Hz), charge density: 1.22 mC/cm, we observed an increase in retinal thickness from 154.3 ± 7.04 to 179.67 ± 0.47, a 16.66 % ± 5.49% increase compared to baseline. The region of increased thickness extended laterally for 0.56 mm ± 0.009 mm. When stimulating with a charge density of 1.63 mC/cm, we observed an increase in retinal thickness from 160.3 ± 2.05 to 190 ± 0.81, a 19.52 % ± 1.86% increase compared to baseline. The region of increased thickness expanded laterally for 1.27 mm ± 0.19 mm.
视网膜假体使失明患者能够检测运动并定位大型物体。为避免激活过路轴突(这可能产生条纹状感知),可使用长脉冲刺激来绕过轴突并实现视网膜局部激活。安全性是一个问题,因为与短脉冲相比,长脉冲需要更多电荷才能引发神经组织的反应。未来的植入物将需要更小的电极来提高分辨率,但这可能会导致电荷密度增加,这是另一个安全问题。我们开发了一种方法,在动物模型中,通过将光学相干断层扫描(OCT)成像与刺激电极在视网膜上的微定位相结合,实时研究视网膜电刺激的效果。当使用直径为250微米的电极并刺激30分钟(频率:333赫兹),电荷密度为1.22毫库仑/平方厘米时,我们观察到视网膜厚度从154.3±7.04增加到179.67±0.47,与基线相比增加了16.66%±5.49%。厚度增加的区域横向扩展了0.56毫米±0.009毫米。当以1.63毫库仑/平方厘米的电荷密度进行刺激时,我们观察到视网膜厚度从160.3±2.05增加到190±0.81,与基线相比增加了19.52%±1.86%。厚度增加的区域横向扩展了1.27毫米±0.19毫米。