Suppr超能文献

使用动态时间规整的静息态功能磁共振成像功能连接分析

Resting State fMRI Functional Connectivity Analysis Using Dynamic Time Warping.

作者信息

Meszlényi Regina J, Hermann Petra, Buza Krisztian, Gál Viktor, Vidnyánszky Zoltán

机构信息

Department of Cognitive Science, Budapest University of Technology and EconomicsBudapest, Hungary; Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of SciencesBudapest, Hungary.

Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Hungary.

出版信息

Front Neurosci. 2017 Feb 17;11:75. doi: 10.3389/fnins.2017.00075. eCollection 2017.

Abstract

Traditional resting-state network concept is based on calculating linear dependence of spontaneous low frequency fluctuations of the BOLD signals of different brain areas, which assumes temporally stable zero-lag synchrony across regions. However, growing amount of experimental findings suggest that functional connectivity exhibits dynamic changes and a complex time-lag structure, which cannot be captured by the static zero-lag correlation analysis. Here we propose a new approach applying Dynamic Time Warping (DTW) distance to evaluate functional connectivity strength that accounts for non-stationarity and phase-lags between the observed signals. Using simulated fMRI data we found that DTW captures dynamic interactions and it is less sensitive to linearly combined global noise in the data as compared to traditional correlation analysis. We tested our method using resting-state fMRI data from repeated measurements of an individual subject and showed that DTW analysis results in more stable connectivity patterns by reducing the within-subject variability and increasing robustness for preprocessing strategies. Classification results on a public dataset revealed a superior sensitivity of the DTW analysis to group differences by showing that DTW based classifiers outperform the zero-lag correlation and maximal lag cross-correlation based classifiers significantly. Our findings suggest that analysing resting-state functional connectivity using DTW provides an efficient new way for characterizing functional networks.

摘要

传统的静息态网络概念基于计算不同脑区血氧水平依赖(BOLD)信号自发低频波动的线性相关性,该方法假定各区域间存在时间上稳定的零滞后同步。然而,越来越多的实验结果表明,功能连接呈现动态变化且具有复杂的时间滞后结构,而静态零滞后相关分析无法捕捉这些特征。在此,我们提出一种新方法,应用动态时间规整(DTW)距离来评估功能连接强度,该方法考虑了观测信号之间的非平稳性和相位滞后。使用模拟功能磁共振成像(fMRI)数据,我们发现DTW能够捕捉动态相互作用,并且与传统相关分析相比,它对数据中线性组合的全局噪声不太敏感。我们使用来自个体受试者重复测量的静息态fMRI数据测试了我们的方法,结果表明DTW分析通过降低受试者内部变异性并提高预处理策略的稳健性,从而产生更稳定的连接模式。在一个公共数据集上的分类结果显示,基于DTW的分类器显著优于基于零滞后相关和最大滞后互相关的分类器,这表明DTW分析对组间差异具有更高的敏感性。我们的研究结果表明,使用DTW分析静息态功能连接为表征功能网络提供了一种有效的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a2/5313507/1537837fffca/fnins-11-00075-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验