Wiafe Sir-Lord, Kinsey Spencer, Soleimani Najme, Nsafoa Raymond O, Khasayeva Nigar, Harikumar Amritha, Miller Robyn, Calhoun Vince D
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA.
Kwame Nkrumah University of Science and Technology (KNUST) Hospital, Kumasi, 00233, Ghana.
bioRxiv. 2025 Mar 21:2025.03.20.644399. doi: 10.1101/2025.03.20.644399.
Understanding how metabolic energy is distributed across brain networks is essential for elucidating healthy brain function and neurological disorders. Research has established the link between blood flow changes and glucose metabolic processes that fuel neural activity. Here, we introduce a novel framework based on the normalized dynamic time warping algorithm robust to neural temporal variability, enabling reliable insights into metabolic energy demands using functional magnetic resonance imaging data. Our findings indicate that healthy brains maintain balanced energy distribution, whereas imbalances are more pronounced in schizophrenia with links to both positive and negative symptoms, particularly during rapid neural processes. Additionally, we identified a dynamic state that supports the brain criticality theory and is associated with higher-order cognitive abilities, demonstrating our framework's functional and clinical relevance. By linking metabolic energy distribution to neural dynamics, this framework provides a novel way to estimate and quantify the brain's maintenance of functional balance in a broadly applicable manner for studying brain health and disorders.
了解代谢能量如何在脑网络中分布对于阐明健康的脑功能和神经疾病至关重要。研究已经确立了血流变化与为神经活动提供能量的葡萄糖代谢过程之间的联系。在此,我们引入了一个基于归一化动态时间规整算法的新颖框架,该算法对神经时间变异性具有鲁棒性,能够利用功能磁共振成像数据可靠地洞察代谢能量需求。我们的研究结果表明,健康大脑维持能量分布平衡,而精神分裂症中的能量失衡更为明显,与阳性和阴性症状均有关联,尤其是在快速神经过程中。此外,我们识别出一种支持脑临界性理论且与高阶认知能力相关的动态状态,证明了我们框架的功能和临床相关性。通过将代谢能量分布与神经动力学联系起来,该框架提供了一种新颖的方法,以广泛适用的方式估计和量化大脑对功能平衡的维持,用于研究脑健康和疾病。