Suppr超能文献

确定气候对美国农业总生产力的影响。

Determining climate effects on US total agricultural productivity.

机构信息

Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20740;

Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740.

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2285-E2292. doi: 10.1073/pnas.1615922114. Epub 2017 Mar 6.

Abstract

The sensitivity of agricultural productivity to climate has not been sufficiently quantified. The total factor productivity (TFP) of the US agricultural economy has grown continuously for over half a century, with most of the growth typically attributed to technical change. Many studies have examined the effects of local climate on partial productivity measures such as crop yields and economic returns, but these measures cannot account for national-level impacts. Quantifying the relationships between TFP and climate is critical to understanding whether current US agricultural productivity growth will continue into the future. We analyze correlations between regional climate variations and national TFP changes, identify key climate indices, and build a multivariate regression model predicting the growth of agricultural TFP based on a physical understanding of its historical relationship with climate. We show that temperature and precipitation in distinct agricultural regions and seasons explain ∼70% of variations in TFP growth during 1981-2010. To date, the aggregate effects of these regional climate trends on TFP have been outweighed by improvements in technology. Should these relationships continue, however, the projected climate changes could cause TFP to drop by an average 2.84 to 4.34% per year under medium to high emissions scenarios. As a result, TFP could fall to pre-1980 levels by 2050 even when accounting for present rates of innovation. Our analysis provides an empirical foundation for integrated assessment by linking regional climate effects to national economic outcomes, offering a more objective resource for policy making.

摘要

农业生产力对气候的敏感性尚未得到充分量化。美国农业经济的全要素生产率(TFP)在过去半个多世纪里持续增长,其中大部分增长通常归因于技术变革。许多研究都考察了局部气候对部分生产力指标(如作物产量和经济回报)的影响,但这些指标无法说明国家层面的影响。量化 TFP 与气候之间的关系对于理解未来美国农业生产力增长是否会持续至关重要。我们分析了区域气候变化与全国 TFP 变化之间的相关性,确定了关键气候指数,并根据其与气候历史关系的物理理解,构建了一个多元回归模型来预测农业 TFP 的增长。我们表明,在 1981 年至 2010 年期间,不同农业地区和季节的温度和降水解释了 TFP 增长变化的约 70%。到目前为止,这些区域气候趋势对 TFP 的综合影响已被技术进步所抵消。然而,如果这些关系继续下去,预计的气候变化可能导致 TFP 在中高排放情景下每年平均下降 2.84%至 4.34%。因此,即使考虑到目前的创新速度,到 2050 年,TFP 可能会降至 1980 年前的水平。我们的分析通过将区域气候影响与国家经济结果联系起来,为综合评估提供了一个实证基础,为政策制定提供了一个更客观的资源。

相似文献

1
Determining climate effects on US total agricultural productivity.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2285-E2292. doi: 10.1073/pnas.1615922114. Epub 2017 Mar 6.
2
SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
Sci Total Environ. 2018 Jul 15;630:502-516. doi: 10.1016/j.scitotenv.2018.02.234. Epub 2018 Feb 24.
3
Impact of climate change on crop yield and role of model for achieving food security.
Environ Monit Assess. 2016 Aug;188(8):465. doi: 10.1007/s10661-016-5472-3. Epub 2016 Jul 14.
4
The effects of climate change on African agricultural productivity growth revisited.
Environ Sci Pollut Res Int. 2021 Jun;28(23):30035-30045. doi: 10.1007/s11356-021-12684-5. Epub 2021 Feb 13.
5
Biophysical impacts of climate-smart agriculture in the Midwest United States.
Plant Cell Environ. 2015 Sep;38(9):1913-30. doi: 10.1111/pce.12485. Epub 2015 Jan 23.
6
Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China.
Environ Monit Assess. 2017 Oct 1;189(11):532. doi: 10.1007/s10661-017-6256-0.
7
Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions.
J Environ Manage. 2015 Jan 15;148:21-30. doi: 10.1016/j.jenvman.2014.02.026. Epub 2014 Mar 25.
8
Climate change impacts on crop production in Iran's Zayandeh-Rud River Basin.
Sci Total Environ. 2013 Jan 1;442:405-19. doi: 10.1016/j.scitotenv.2012.10.029. Epub 2012 Nov 23.
9
A new look at the decomposition of agricultural productivity growth incorporating weather effects.
PLoS One. 2018 Feb 21;13(2):e0192432. doi: 10.1371/journal.pone.0192432. eCollection 2018.
10
Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.
Sci Total Environ. 2010 Nov 1;408(23):5667-87. doi: 10.1016/j.scitotenv.2009.05.002. Epub 2009 Jun 5.

引用本文的文献

1
Large increases in public R&D investment are needed to avoid declines of US agricultural productivity.
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2411010122. doi: 10.1073/pnas.2411010122. Epub 2025 Mar 11.
2
New York State Climate Impacts Assessment Chapter 03: Agriculture.
Ann N Y Acad Sci. 2024 Dec;1542(1):146-213. doi: 10.1111/nyas.15192. Epub 2024 Dec 9.
3
Rumen-mammary gland axis and bacterial extracellular vesicles: Exploring a new perspective on heat stress in dairy cows.
Anim Nutr. 2024 Sep 16;19:70-75. doi: 10.1016/j.aninu.2024.08.003. eCollection 2024 Dec.
4
The economic commitment of climate change.
Nature. 2024 Apr;628(8008):551-557. doi: 10.1038/s41586-024-07219-0. Epub 2024 Apr 17.
5
Earth at risk: An urgent call to end the age of destruction and forge a just and sustainable future.
PNAS Nexus. 2024 Apr 2;3(4):pgae106. doi: 10.1093/pnasnexus/pgae106. eCollection 2024 Apr.
6
The spatiotemporal pattern of surface ozone and its impact on agricultural productivity in China.
PNAS Nexus. 2023 Dec 14;3(1):pgad435. doi: 10.1093/pnasnexus/pgad435. eCollection 2024 Jan.
7
Effects of landscape simplicity on crop yield: A reanalysis of a global database.
PLoS One. 2023 Dec 14;18(12):e0289799. doi: 10.1371/journal.pone.0289799. eCollection 2023.
8
Leaf morpho-physiological traits of and in different irrigation regimes and fertilizer types.
PeerJ. 2023 Sep 29;11:e16107. doi: 10.7717/peerj.16107. eCollection 2023.
9
Enhancing Crop Resilience to Drought Stress through CRISPR-Cas9 Genome Editing.
Plants (Basel). 2023 Jun 14;12(12):2306. doi: 10.3390/plants12122306.
10
Landscape complexity and US crop production.
Nat Food. 2021 May;2(5):330-338. doi: 10.1038/s43016-021-00281-1. Epub 2021 May 20.

本文引用的文献

1
Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands.
PLoS One. 2016 Feb 11;11(2):e0148566. doi: 10.1371/journal.pone.0148566. eCollection 2016.
2
Climate variation explains a third of global crop yield variability.
Nat Commun. 2015 Jan 22;6:5989. doi: 10.1038/ncomms6989.
3
Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest.
Science. 2014 May 2;344(6183):516-9. doi: 10.1126/science.1251423.
4
Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3268-73. doi: 10.1073/pnas.1222463110. Epub 2013 Dec 16.
5
Climate change effects on agriculture: economic responses to biophysical shocks.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3274-9. doi: 10.1073/pnas.1222465110. Epub 2013 Dec 16.
6
Implications of climate change for agricultural productivity in the early twenty-first century.
Philos Trans R Soc Lond B Biol Sci. 2010 Sep 27;365(1554):2973-89. doi: 10.1098/rstb.2010.0158.
7
Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15594-8. doi: 10.1073/pnas.0906865106. Epub 2009 Aug 28.
8
Model projections of an imminent transition to a more arid climate in southwestern North America.
Science. 2007 May 25;316(5828):1181-4. doi: 10.1126/science.1139601. Epub 2007 Apr 5.
9
Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations.
Science. 2006 Jun 30;312(5782):1918-21. doi: 10.1126/science.1114722.
10
Climate and management contributions to recent trends in U.S. agricultural yields.
Science. 2003 Feb 14;299(5609):1032. doi: 10.1126/science.1078475.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验