Hoeprich Gregory J, Mickolajczyk Keith J, Nelson Shane R, Hancock William O, Berger Christopher L
Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, Vermont.
Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania.
Traffic. 2017 May;18(5):304-314. doi: 10.1111/tra.12478. Epub 2017 Apr 5.
Axonal transport involves kinesin motors trafficking cargo along microtubules that are rich in microtubule-associated proteins (MAPs). Much attention has focused on the behavior of kinesin-1 in the presence of MAPs, which has overshadowed understanding the contribution of other kinesins such as kinesin-2 in axonal transport. We have previously shown that, unlike kinesin-1, kinesin-2 in vitro motility is insensitive to the neuronal MAP Tau. However, the mechanism by which kinesin-2 efficiently navigates Tau on the microtubule surface is unknown. We hypothesized that mammalian kinesin-2 side-steps to adjacent protofilaments to maneuver around MAPs. To test this, we used single-molecule imaging to track the characteristic run length and protofilament switching behavior of kinesin-1 and kinesin-2 motors in the absence and presence of 2 different microtubule obstacles. Under all conditions tested, kinesin-2 switched protofilaments more frequently than kinesin-1. Using computational modeling that recapitulates run length and switching frequencies in the presence of varying roadblock densities, we conclude that kinesin-2 switches protofilaments to navigate around microtubule obstacles. Elucidating the kinesin-2 mechanism of navigation on the crowded microtubule surface provides a refined view of its contribution in facilitating axonal transport.
轴突运输涉及驱动蛋白沿着富含微管相关蛋白(MAPs)的微管运输货物。很多注意力都集中在微管相关蛋白存在时驱动蛋白-1的行为上,这使得对其他驱动蛋白(如驱动蛋白-2)在轴突运输中的作用的理解变得黯然失色。我们之前已经表明,与驱动蛋白-1不同,驱动蛋白-2的体外运动对神经元微管相关蛋白Tau不敏感。然而,驱动蛋白-2在微管表面有效避开Tau的机制尚不清楚。我们推测哺乳动物驱动蛋白-2会侧向移动到相邻的原纤维上以绕过微管相关蛋白。为了验证这一点,我们使用单分子成像技术来追踪在存在和不存在两种不同微管障碍物的情况下驱动蛋白-1和驱动蛋白-2的特征运行长度和原纤维切换行为。在所有测试条件下,驱动蛋白-2比驱动蛋白-1更频繁地切换原纤维。通过计算模型来重现存在不同密度障碍物时的运行长度和切换频率,我们得出结论,驱动蛋白-2通过切换原纤维来绕过微管障碍物。阐明驱动蛋白-2在拥挤的微管表面上的导航机制,为其在促进轴突运输中的作用提供了更精确的认识。