Suppr超能文献

基于无袖带光电容积脉搏波描记法的连续血压监测:一种基于智能手机的方法。

Cuff-less PPG based continuous blood pressure monitoring: a smartphone based approach.

作者信息

Gaurav Aman, Maheedhar Maram, Tiwari Vijay N, Narayanan Rangavittal

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:607-610. doi: 10.1109/EMBC.2016.7590775.

Abstract

Cuff-less estimation of systolic (SBP) and diastolic (DBP) blood pressure is an efficient approach for non-invasive and continuous monitoring of an individual's vitals. Although pulse transit time (PTT) based approaches have been successful in estimating the systolic and diastolic blood pressures to a reasonable degree of accuracy, there is still scope for improvement in terms of accuracies. Moreover, PTT approach requires data from sensors placed at two different locations along with individual calibration of physiological parameters for deriving correct estimation of systolic and diastolic blood pressure (BP) and hence is not suitable for smartphone deployment. Heart Rate Variability is one of the extensively used non-invasive parameters to assess cardiovascular autonomic nervous system and is known to be associated with SBP and DBP indirectly. In this work, we propose a novel method to extract a comprehensive set of features by combining PPG signal based and Heart Rate Variability (HRV) related features using a single PPG sensor. Further, these features are fed into a DBP feedback based combinatorial neural network model to arrive at a common weighted average output of DBP and subsequently SBP. Our results show that using this current approach, an accuracy of ±6.8 mmHg for SBP and ±4.7 mmHg for DBP is achievable on 1,750,000 pulses extracted from a public database (comprising 3000 people). Since most of the smartphones are now equipped with PPG sensor, a mobile based cuff-less BP estimation will enable the user to monitor their BP as a vital parameter on demand. This will open new avenues towards development of pervasive and continuous BP monitoring systems leading to an early detection and prevention of cardiovascular diseases.

摘要

无袖带收缩压(SBP)和舒张压(DBP)估计是一种用于无创连续监测个人生命体征的有效方法。尽管基于脉搏传输时间(PTT)的方法已成功地在一定程度上准确估计收缩压和舒张压,但在准确性方面仍有改进空间。此外,PTT方法需要来自放置在两个不同位置的传感器的数据,以及对生理参数进行个体校准,以得出收缩压和舒张压(BP)的正确估计值,因此不适用于智能手机部署。心率变异性是广泛用于评估心血管自主神经系统的无创参数之一,已知与SBP和DBP间接相关。在这项工作中,我们提出了一种新颖的方法,通过使用单个PPG传感器结合基于PPG信号的特征和与心率变异性(HRV)相关的特征来提取一组综合特征。此外,这些特征被输入到基于DBP反馈的组合神经网络模型中,以得出DBP的共同加权平均输出,随后得出SBP。我们的结果表明,使用当前方法,从一个公共数据库(包含3000人)提取的1750000个脉搏上,SBP的准确率可达±6.8 mmHg,DBP的准确率可达±4.7 mmHg。由于现在大多数智能手机都配备了PPG传感器,基于移动设备的无袖带血压估计将使用户能够按需将血压作为重要参数进行监测。这将为普及和连续血压监测系统的发展开辟新途径,从而实现心血管疾病的早期检测和预防。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验