Suppr超能文献

人类大脑皮质脑回的薄膜、高密度微脑电图解码

Thin-film, high-density micro-electrocorticographic decoding of a human cortical gyrus.

作者信息

Muller Leah, Felix Sarah, Shah Kedar G, Pannu Satinderpall, Chang Edward F

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1528-1531. doi: 10.1109/EMBC.2016.7591001.

Abstract

High-density electrocorticography (ECoG) arrays are promising interfaces for high-resolution neural recording from the cortical surface. Commercial options for high-density arrays are limited, and historically tradeoffs must be made between spatial coverage and electrode density. However, thin-film technology is a promising alternative for generating electrode arrays capable of large area coverage and high channel count, with resolution on the order of cortical columns in the functional surface unit of a human gyrus. Here, we evaluate the sensing performance of a high-density thin-film 128-electrode array designed specifically for recording the distributed neural activity of a single human cortical gyrus. We found robust field potential responses throughout the superior temporal gyrus evoked by speech sounds, and clear phonetic feature selectivity at the resolution of 2 mm inter-electrode distance. Decoding accuracy improved with increasing density of electrodes over all three patients tested. Thin-film ECoG has significant potential for high-density neural interface applications at the scale of a human gyrus.

摘要

高密度皮质脑电图(ECoG)阵列是用于从皮质表面进行高分辨率神经记录的有前景的接口。高密度阵列的商业选择有限,并且从历史上看,必须在空间覆盖范围和电极密度之间进行权衡。然而,薄膜技术是一种有前景的替代方案,可用于制造能够大面积覆盖和具有高通道数的电极阵列,其分辨率在人类脑回功能表面单元中皮质柱的量级上。在这里,我们评估了专门设计用于记录单个人类皮质脑回分布式神经活动的高密度薄膜128电极阵列的传感性能。我们发现,语音在整个颞上回诱发了强大的场电位反应,并且在电极间距为2毫米的分辨率下具有清晰的语音特征选择性。在所有测试的三名患者中,解码准确率随着电极密度的增加而提高。薄膜ECoG在人类脑回尺度的高密度神经接口应用中具有巨大潜力。

相似文献

1
Thin-film, high-density micro-electrocorticographic decoding of a human cortical gyrus.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1528-1531. doi: 10.1109/EMBC.2016.7591001.
2
Multiplexed Surface Electrode Arrays Based on Metal Oxide Thin-Film Electronics for High-Resolution Cortical Mapping.
Adv Sci (Weinh). 2024 Mar;11(10):e2308507. doi: 10.1002/advs.202308507. Epub 2023 Dec 25.
3
Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography.
J Neural Eng. 2016 Oct;13(5):056013. doi: 10.1088/1741-2560/13/5/056013. Epub 2016 Aug 31.
5
High Spatiotemporal Resolution ECoG Recording of Somatosensory Evoked Potentials with Flexible Micro-Electrode Arrays.
Front Neural Circuits. 2017 Apr 11;11:20. doi: 10.3389/fncir.2017.00020. eCollection 2017.
6
An electrocorticographic electrode array for simultaneous recording from medial, lateral, and intrasulcal surface of the cortex in macaque monkeys.
J Neurosci Methods. 2014 Aug 15;233:155-65. doi: 10.1016/j.jneumeth.2014.06.022. Epub 2014 Jun 24.
7
Spatial co-adaptation of cortical control columns in a micro-ECoG brain-computer interface.
J Neural Eng. 2016 Oct;13(5):056018. doi: 10.1088/1741-2560/13/5/056018. Epub 2016 Sep 21.
8
New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents.
Sci Rep. 2018 Feb 28;8(1):3825. doi: 10.1038/s41598-018-22051-z.
9
Decoding Speech from Intracortical Multielectrode Arrays in Dorsal "Arm/Hand Areas" of Human Motor Cortex.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:93-97. doi: 10.1109/EMBC.2018.8512199.
10
Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity.
J Neural Eng. 2014 Feb;11(1):016010. doi: 10.1088/1741-2560/11/1/016010. Epub 2014 Jan 20.

引用本文的文献

1
Challenges and opportunities of acquiring cortical recordings for chronic adaptive deep brain stimulation.
Nat Biomed Eng. 2025 May;9(5):606-617. doi: 10.1038/s41551-024-01314-3. Epub 2024 Dec 27.
2
Approaches of wearable and implantable biosensor towards of developing in precision medicine.
Front Med (Lausanne). 2024 Jul 18;11:1390634. doi: 10.3389/fmed.2024.1390634. eCollection 2024.
3
The speech neuroprosthesis.
Nat Rev Neurosci. 2024 Jul;25(7):473-492. doi: 10.1038/s41583-024-00819-9. Epub 2024 May 14.
4
Research Progress on the Flexibility of an Implantable Neural Microelectrode.
Micromachines (Basel). 2022 Feb 28;13(3):386. doi: 10.3390/mi13030386.
7
Direct Electrical Stimulation in Electrocorticographic Brain-Computer Interfaces: Enabling Technologies for Input to Cortex.
Front Neurosci. 2019 Aug 7;13:804. doi: 10.3389/fnins.2019.00804. eCollection 2019.
8
It's the little things: On the complexity of planar electrode heating in MRI.
Neuroimage. 2019 Jul 15;195:272-284. doi: 10.1016/j.neuroimage.2019.03.061. Epub 2019 Mar 29.

本文引用的文献

1
NeuroGrid: recording action potentials from the surface of the brain.
Nat Neurosci. 2015 Feb;18(2):310-5. doi: 10.1038/nn.3905. Epub 2014 Dec 22.
2
An electrocorticographic electrode array for simultaneous recording from medial, lateral, and intrasulcal surface of the cortex in macaque monkeys.
J Neurosci Methods. 2014 Aug 15;233:155-65. doi: 10.1016/j.jneumeth.2014.06.022. Epub 2014 Jun 24.
3
Phonetic feature encoding in human superior temporal gyrus.
Science. 2014 Feb 28;343(6174):1006-10. doi: 10.1126/science.1245994. Epub 2014 Jan 30.
4
Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5622-5. doi: 10.1109/EMBC.2013.6610825.
5
Optimization of multi-layer metal neural probe design.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5995-8. doi: 10.1109/EMBC.2012.6347360.
6
A micro-electrocorticography platform and deployment strategies for chronic BCI applications.
Clin EEG Neurosci. 2011 Oct;42(4):259-65. doi: 10.1177/155005941104200412.
8
Intrasulcal electrocorticography in macaque monkeys with minimally invasive neurosurgical protocols.
Front Syst Neurosci. 2011 May 25;5:34. doi: 10.3389/fnsys.2011.00034. eCollection 2011.
9
Categorical speech representation in human superior temporal gyrus.
Nat Neurosci. 2010 Nov;13(11):1428-32. doi: 10.1038/nn.2641. Epub 2010 Oct 3.
10
Comparison of time-frequency responses and the event-related potential to auditory speech stimuli in human cortex.
J Neurophysiol. 2009 Jul;102(1):377-86. doi: 10.1152/jn.90954.2008. Epub 2009 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验