Friedenberg David A, Bouton Chad E, Annetta Nicholas V, Skomrock Nicholas, Schwemmer Michael, Bockbrader Marcia A, Mysiw W Jerry, Rezai Ali R, Bresler Herbert S, Sharma Gaurav
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3084-3087. doi: 10.1109/EMBC.2016.7591381.
Recent advances in Brain Computer Interfaces (BCIs) have created hope that one day paralyzed patients will be able to regain control of their paralyzed limbs. As part of an ongoing clinical study, we have implanted a 96-electrode Utah array in the motor cortex of a paralyzed human. The array generates almost 3 million data points from the brain every second. This presents several big data challenges towards developing algorithms that should not only process the data in real-time (for the BCI to be responsive) but are also robust to temporal variations and non-stationarities in the sensor data. We demonstrate an algorithmic approach to analyze such data and present a novel method to evaluate such algorithms. We present our methodology with examples of decoding human brain data in real-time to inform a BCI.
脑机接口(BCIs)的最新进展带来了这样的希望:有朝一日瘫痪患者将能够重新控制他们瘫痪的肢体。作为一项正在进行的临床研究的一部分,我们在一名瘫痪患者的运动皮层中植入了一个96电极的犹他阵列。该阵列每秒从大脑生成近300万个数据点。这给开发算法带来了几个大数据挑战,这些算法不仅要实时处理数据(以使脑机接口具有响应性),而且还要对传感器数据中的时间变化和非平稳性具有鲁棒性。我们展示了一种分析此类数据的算法方法,并提出了一种评估此类算法的新方法。我们通过实时解码人脑数据以用于脑机接口的示例来展示我们的方法。