Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria.
Center for Integrated Protein Science Munich, Technische Universität München, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany.; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
Sci Adv. 2017 Mar 3;3(3):e1602498. doi: 10.1126/sciadv.1602498. eCollection 2017 Mar.
Nature has evolved an astonishingly modular architecture of covalently linked protein domains with diverse functionalities to enable complex cellular networks that are critical for cell survival. The coupling of sensory modules with enzymatic effectors allows direct allosteric regulation of cellular signaling molecules in response to diverse stimuli. We present molecular details of red light-sensing bacteriophytochromes linked to cyclic dimeric guanosine monophosphate-producing diguanylyl cyclases. Elucidation of the first crystal structure of a full-length phytochrome with its enzymatic effector, in combination with the characterization of light-induced changes in conformational dynamics, reveals how allosteric light regulation is fine-tuned by the architecture and composition of the coiled-coil sensor-effector linker and also the central helical spine. We anticipate that consideration of molecular principles of sensor-effector coupling, going beyond the length of the characteristic linker, and the appreciation of dynamically driven allostery will open up new directions for the design of novel red light-regulated optogenetic tools.
大自然进化出了一种令人惊讶的具有多种功能的共价连接蛋白结构域模块结构,从而形成了复杂的细胞网络,这些网络对细胞的存活至关重要。感觉模块与酶效应器的耦合允许直接对细胞信号分子进行变构调节,以响应各种刺激。我们展示了与环状二核苷酸单磷酸产生酶双鸟苷酸环化酶相连的红光感应细菌菌视紫红质的分子细节。阐明了第一个全长菌视紫红质与其酶效应器的晶体结构,结合对光诱导构象动力学变化的表征,揭示了变构光调节如何通过螺旋传感器-效应器连接体的结构和组成以及中央螺旋脊来精细调整。我们预计,超越特征性连接体的长度考虑传感器-效应器偶联的分子原理,并认识到动态驱动的变构作用,将为设计新型红光调控光遗传学工具开辟新的方向。