Suppr超能文献

人工耳蜗电刺激与向对侧有残余听力的耳朵呈现的声刺激之间的音高匹配

Pitch Matching between Electrical Stimulation of a Cochlear Implant and Acoustic Stimuli Presented to a Contralateral Ear with Residual Hearing.

作者信息

Tan Chin-Tuan, Martin Brett, Svirsky Mario A

机构信息

Department of Otolaryngology, NYU School of Medicine, New York, NY.

Speech and Hearing Sciences, Graduate Center, City University of New York, New York, NY.

出版信息

J Am Acad Audiol. 2017 Mar;28(3):187-199. doi: 10.3766/jaaa.15063.

Abstract

BACKGROUND

Cochlear implants (CIs) successfully restore hearing in postlingually deaf adults, but in doing so impose a frequency-position function in the cochlea that may differ from the physiological one.

PURPOSE

The CI-imposed frequency-position function is determined by the frequency allocation table programmed into the listener's speech processor and by the location of the electrode array along the cochlea. To what extent can postlingually deaf CI users successfully adapt to the difference between physiological and CI-imposed frequency-position functions?

RESEARCH DESIGN

We attempt to answer the question by combining behavioral measures of electroacoustic pitch matching (PM) and measures of electrode location within the cochlea.

STUDY SAMPLE

The participants in this study were 16 adult CI users with residual hearing who could match the pitch of acoustic pure tones presented to their unimplanted ears to the pitch resulting from stimulation of different CI electrodes.

DATA COLLECTION AND ANALYSIS

We obtained data for four to eight apical electrodes from 16 participants with CIs (most of whom were long-term users), and estimated electrode insertion angle for 12 of these participants. PM functions in this group were compared with the two frequency-position functions discussed above.

RESULTS

Taken together, the findings were consistent with the possibility that adaptation to the frequency-position function imposed by CIs does happen, but it is not always complete.

CONCLUSIONS

Some electrodes continue to be perceived as higher pitched than the acoustic frequencies with which they are associated despite years of listening experience after cochlear implantation.

摘要

背景

人工耳蜗(CI)能成功恢复语后聋成年人的听力,但这样做会在耳蜗中施加一种频率-位置功能,该功能可能与生理功能不同。

目的

人工耳蜗施加的频率-位置功能由编程到听者言语处理器中的频率分配表以及电极阵列沿耳蜗的位置决定。语后聋的人工耳蜗使用者能在多大程度上成功适应生理和人工耳蜗施加的频率-位置功能之间的差异?

研究设计

我们试图通过结合电声音高匹配(PM)的行为测量和耳蜗内电极位置的测量来回答这个问题。

研究样本

本研究的参与者为16名有残余听力的成年人工耳蜗使用者,他们能够将呈现给其未植入耳朵的纯音音高与不同人工耳蜗电极刺激产生的音高相匹配。

数据收集与分析

我们从16名人工耳蜗使用者(其中大多数是长期使用者)那里获取了四到八个顶端电极的数据,并估计了其中12名参与者的电极插入角度。将该组的音高匹配功能与上述两种频率-位置功能进行了比较。

结果

总体而言,研究结果与这样一种可能性一致,即对人工耳蜗施加的频率-位置功能的适应确实会发生,但并不总是完全适应。

结论

尽管人工耳蜗植入后有多年的听力经验,但一些电极仍被感知为比与其相关联的声频音调更高。

相似文献

2
Pitch matching psychometrics in electric acoustic stimulation.
Ear Hear. 2011 Sep-Oct;32(5):656-62. doi: 10.1097/AUD.0b013e31821a4800.
3
Acoustic to electric pitch comparisons in cochlear implant subjects with residual hearing.
J Assoc Res Otolaryngol. 2006 Jun;7(2):110-24. doi: 10.1007/s10162-005-0027-2. Epub 2006 Feb 1.
5
Place dependent stimulation rates improve pitch perception in cochlear implantees with single-sided deafness.
Hear Res. 2016 Sep;339:94-103. doi: 10.1016/j.heares.2016.06.013. Epub 2016 Jul 1.
6
Electric-acoustic pitch comparisons in single-sided-deaf cochlear implant users: frequency-place functions and rate pitch.
Hear Res. 2014 Mar;309:26-35. doi: 10.1016/j.heares.2013.11.003. Epub 2013 Nov 16.
9
Pitch adaptation patterns in bimodal cochlear implant users: over time and after experience.
Ear Hear. 2015 Mar-Apr;36(2):e23-34. doi: 10.1097/AUD.0000000000000114.
10
Frequency-place map for electrical stimulation in cochlear implants: Change over time.
Hear Res. 2015 Aug;326:8-14. doi: 10.1016/j.heares.2015.03.011. Epub 2015 Apr 1.

引用本文的文献

1
2
A Level-Adjusted Cochlear Frequency-to-Place Map for Estimating Tonotopic Frequency Mismatch With a Cochlear Implant.
Ear Hear. 2025;46(4):963-975. doi: 10.1097/AUD.0000000000001641. Epub 2025 Feb 11.
3
Tonotopic and Default Frequency Fitting for Music Perception in Cochlear Implant Recipients: A Randomized Clinical Trial.
JAMA Otolaryngol Head Neck Surg. 2024 Nov 1;150(11):960-968. doi: 10.1001/jamaoto.2024.2895.
4
Close approximations to the sound of a cochlear implant.
Front Hum Neurosci. 2024 Jul 17;18:1434786. doi: 10.3389/fnhum.2024.1434786. eCollection 2024.
6
Matching the pitch perception of the cochlear implanted ear with the contralateral ear in patients with single-sided deafness: a novel approach.
Eur Arch Otorhinolaryngol. 2023 Nov;280(11):4851-4859. doi: 10.1007/s00405-023-08002-z. Epub 2023 May 3.
7
Imaging-based frequency mapping for cochlear implants - Evaluated using a daily randomized controlled trial.
Front Neurosci. 2023 Apr 13;17:1119933. doi: 10.3389/fnins.2023.1119933. eCollection 2023.

本文引用的文献

3
Frequency-place map for electrical stimulation in cochlear implants: Change over time.
Hear Res. 2015 Aug;326:8-14. doi: 10.1016/j.heares.2015.03.011. Epub 2015 Apr 1.
4
Bilateral cochlear implants with large asymmetries in electrode insertion depth: implications for the study of auditory plasticity.
Acta Otolaryngol. 2015 Apr;135(4):354-63. doi: 10.3109/00016489.2014.1002052. Epub 2015 Feb 26.
5
Pitch adaptation patterns in bimodal cochlear implant users: over time and after experience.
Ear Hear. 2015 Mar-Apr;36(2):e23-34. doi: 10.1097/AUD.0000000000000114.
6
Electric-acoustic pitch comparisons in single-sided-deaf cochlear implant users: frequency-place functions and rate pitch.
Hear Res. 2014 Mar;309:26-35. doi: 10.1016/j.heares.2013.11.003. Epub 2013 Nov 16.
7
Plasticity in human pitch perception induced by tonotopically mismatched electro-acoustic stimulation.
Neuroscience. 2014 Jan 3;256:43-52. doi: 10.1016/j.neuroscience.2013.10.024. Epub 2013 Oct 21.
8
Multidimensional scaling between acoustic and electric stimuli in cochlear implant users with contralateral hearing.
Hear Res. 2013 Dec;306:29-36. doi: 10.1016/j.heares.2013.09.004. Epub 2013 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验