Suppr超能文献

多重呼吸惰性气体测试测量的通气异质性不受健康人体吸入氧浓度的影响。

Ventilation heterogeneity measured by multiple breath inert gas testing is not affected by inspired oxygen concentration in healthy humans.

机构信息

Department of Medicine, University of California, San Diego, La Jolla, California; and

Department of Radiology, University of California, San Diego, La Jolla, California.

出版信息

J Appl Physiol (1985). 2017 Jun 1;122(6):1379-1387. doi: 10.1152/japplphysiol.01013.2016. Epub 2017 Mar 9.

Abstract

Multiple breath washout (MBW) and oxygen-enhanced MRI techniques use acute exposure to 100% oxygen to measure ventilation heterogeneity. Implicit is the assumption that breathing 100% oxygen does not induce changes in ventilation heterogeneity; however, this is untested. We hypothesized that ventilation heterogeneity decreases with increasing inspired oxygen concentration in healthy subjects. We performed MBW in 8 healthy subjects (4 women, 4 men; age = 43 ± 15 yr) with normal pulmonary function (FEV = 98 ± 6% predicted) using 10% argon as a tracer gas and oxygen concentrations of 12.5%, 21%, or 90%. MBW was performed in accordance with ERS-ATS guidelines. Subjects initially inspired air followed by a wash-in of test gas. Tests were performed in balanced order in triplicate. Gas concentrations were measured at the mouth, and argon signals rescaled to mimic a N washout, and analyzed to determine the distribution of specific ventilation (SV). Heterogeneity was characterized by the width of a log-Gaussian fit of the SV distribution and from S and S indexes derived from the phase III slope. There were no significant differences in the ventilation heterogeneity due to altered inspired oxygen: histogram width (hypoxia 0.57 ± 0.11, normoxia 0.60 ± 0.08, hyperoxia 0.59 ± 0.09, = 0.51), S (hypoxia 0.014 ± 0.011, normoxia 0.012 ± 0.015, hyperoxia 0.010 ± 0.011, = 0.34), or S (hypoxia 0.11 ± 0.04, normoxia 0.10 ± 0.03, hyperoxia 0.12 ± 0.03, = 0.23). Functional residual capacity was increased in hypoxia ( = 0.04) and dead space increased in hyperoxia ( = 0.0001) compared with the other conditions. The acute use of 100% oxygen in MBW or MRI is unlikely to affect ventilation heterogeneity. Hyperoxia is used to measure the distribution of ventilation in imaging and MBW but may alter the underlying ventilation distribution. We used MBW to evaluate the effect of inspired oxygen concentration on the ventilation distribution using 10% argon as a tracer. Short-duration exposure to hypoxia (12.5% oxygen) and hyperoxia (90% oxygen) during MBW had no significant effect on ventilation heterogeneity, suggesting that hyperoxia can be used to assess the ventilation distribution.

摘要

多呼吸冲洗(MBW)和氧增强 MRI 技术使用急性 100% 氧气暴露来测量通气异质性。这隐含着一个假设,即在健康受试者中,呼吸 100% 的氧气不会引起通气异质性的变化;然而,这尚未得到验证。我们假设在健康受试者中,随着吸入氧气浓度的增加,通气异质性会降低。我们使用 10%氩气作为示踪气体,氧气浓度分别为 12.5%、21%或 90%,对 8 名肺功能正常的健康受试者(4 名女性,4 名男性;年龄=43±15 岁)进行了 MBW。MBW 按照 ERS-ATS 指南进行。受试者最初吸入空气,然后吸入测试气体。在重复的三次测试中,以平衡的顺序进行测试。在口腔处测量气体浓度,氩气信号被重新缩放以模拟 N 冲洗,并进行分析以确定特定通气(SV)的分布。通气异质性通过 SV 分布的对数高斯拟合的宽度以及从 III 相斜率衍生的 S 和 S 指数来描述。由于吸入氧气的改变,通气异质性没有显著差异:直方图宽度(缺氧 0.57±0.11,常氧 0.60±0.08,高氧 0.59±0.09,=0.51),S(缺氧 0.014±0.011,常氧 0.012±0.015,高氧 0.010±0.011,=0.34)或 S(缺氧 0.11±0.04,常氧 0.10±0.03,高氧 0.12±0.03,=0.23)。与其他条件相比,缺氧时功能残气量增加(=0.04),高氧时死腔增加(=0.0001)。MBW 或 MRI 中急性使用 100% 氧气不太可能影响通气异质性。高氧用于测量成像和 MBW 中的通气分布,但可能会改变潜在的通气分布。我们使用 MBW 用 10%氩气作为示踪剂评估吸入氧气浓度对通气分布的影响。MBW 期间短时间暴露于低氧(12.5%氧气)和高氧(90%氧气)对通气异质性没有显著影响,表明高氧可用于评估通气分布。

相似文献

1
Ventilation heterogeneity measured by multiple breath inert gas testing is not affected by inspired oxygen concentration in healthy humans.
J Appl Physiol (1985). 2017 Jun 1;122(6):1379-1387. doi: 10.1152/japplphysiol.01013.2016. Epub 2017 Mar 9.
2
Assessing the calculation of conductive and acinar ventilatory heterogeneity indices and from multiple-breath washout data.
J Appl Physiol (1985). 2023 Apr 1;134(4):879-886. doi: 10.1152/japplphysiol.00423.2022. Epub 2023 Feb 24.
3
The effect of inert gas choice on multiple breath washout in healthy infants: differences in lung function outcomes and breathing pattern.
J Appl Physiol (1985). 2017 Dec 1;123(6):1545-1554. doi: 10.1152/japplphysiol.00524.2017. Epub 2017 Aug 31.
4
Ventilatory heterogeneity in the normal human lung is unchanged by controlled breathing.
J Appl Physiol (1985). 2020 Nov 1;129(5):1152-1160. doi: 10.1152/japplphysiol.00278.2020. Epub 2020 Aug 27.
5
Multiple breath washout cannot be used for tidal breath parameter analysis in infants.
Pediatr Pulmonol. 2016 May;51(5):531-40. doi: 10.1002/ppul.23326. Epub 2015 Oct 5.
6
Novel methodology to perform sulfur hexafluoride (SF6)-based multiple-breath wash-in and washout in infants using current commercially available equipment.
J Appl Physiol (1985). 2016 Nov 1;121(5):1087-1097. doi: 10.1152/japplphysiol.00115.2016. Epub 2016 Aug 4.
7
Validating the distribution of specific ventilation in healthy humans measured using proton MR imaging.
J Appl Physiol (1985). 2014 Apr 15;116(8):1048-56. doi: 10.1152/japplphysiol.00982.2013. Epub 2014 Feb 6.
8
Effects of inspired carbon dioxide on ventilation-perfusion matching in normoxia, hypoxia, and hyperoxia.
Am J Respir Crit Care Med. 1994 Jun;149(6):1563-9. doi: 10.1164/ajrccm.149.6.8004314.

引用本文的文献

本文引用的文献

1
The effect of gas exchange on multiple-breath nitrogen washout measures of ventilation inhomogeneity in the mouse.
J Appl Physiol (1985). 2014 Nov 1;117(9):1049-54. doi: 10.1152/japplphysiol.00543.2014. Epub 2014 Sep 11.
2
Validating the distribution of specific ventilation in healthy humans measured using proton MR imaging.
J Appl Physiol (1985). 2014 Apr 15;116(8):1048-56. doi: 10.1152/japplphysiol.00982.2013. Epub 2014 Feb 6.
3
The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung.
J Appl Physiol (1985). 2013 Aug 1;115(3):313-24. doi: 10.1152/japplphysiol.01531.2012. Epub 2013 Apr 25.
4
Consensus statement for inert gas washout measurement using multiple- and single- breath tests.
Eur Respir J. 2013 Mar;41(3):507-22. doi: 10.1183/09031936.00069712. Epub 2013 Feb 8.
5
CO2 relaxation of the rat lung parenchymal strip.
Respir Physiol Neurobiol. 2013 Mar 1;186(1):33-9. doi: 10.1016/j.resp.2012.12.014. Epub 2013 Jan 7.
6
Automated detection of the phase III slope during inert gas washout testing.
J Appl Physiol (1985). 2012 Mar;112(6):1073-81. doi: 10.1152/japplphysiol.00372.2011. Epub 2011 Dec 15.
7
Vertical distribution of specific ventilation in normal supine humans measured by oxygen-enhanced proton MRI.
J Appl Physiol (1985). 2010 Dec;109(6):1950-9. doi: 10.1152/japplphysiol.00220.2010. Epub 2010 Oct 7.
8
Multiple-breath inert gas washout test and early cystic fibrosis lung disease.
Thorax. 2010 May;65(5):373-4. doi: 10.1136/thx.2009.132100.
9
Inert gas washout: theoretical background and clinical utility in respiratory disease.
Respiration. 2009;78(3):339-55. doi: 10.1159/000225373. Epub 2009 Jun 12.
10
Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans.
J Appl Physiol (1985). 2009 Apr;106(4):1057-64. doi: 10.1152/japplphysiol.90759.2008. Epub 2008 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验