Lemus-Romani José, Crawford Broderick, Cisternas-Caneo Felipe, Soto Ricardo, Becerra-Rozas Marcelo
Escuela de Construcción Civil, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile.
Biomimetics (Basel). 2023 Sep 1;8(5):400. doi: 10.3390/biomimetics8050400.
In this work, an approach is proposed to solve binary combinatorial problems using continuous metaheuristics. It focuses on the importance of binarization in the optimization process, as it can have a significant impact on the performance of the algorithm. Different binarization schemes are presented and a set of actions, which combine different transfer functions and binarization rules, under a selector based on reinforcement learning is proposed. The experimental results show that the binarization rules have a greater impact than transfer functions on the performance of the algorithms and that some sets of actions are statistically better than others. In particular, it was found that sets that incorporate the elite or elite roulette binarization rule are the best. Furthermore, exploration and exploitation were analyzed through percentage graphs and a statistical test was performed to determine the best set of actions. Overall, this work provides a practical approach for the selection of binarization schemes in binary combinatorial problems and offers guidance for future research in this field.
在这项工作中,提出了一种使用连续元启发式算法来解决二元组合问题的方法。它强调了二值化在优化过程中的重要性,因为它可能对算法性能产生重大影响。提出了不同的二值化方案,并提出了一组在基于强化学习的选择器下结合不同传递函数和二值化规则的操作。实验结果表明,二值化规则对算法性能的影响比传递函数更大,并且某些操作集在统计上优于其他操作集。特别是,发现包含精英或精英轮盘二值化规则的集合是最好的。此外,通过百分比图分析了探索和利用情况,并进行了统计测试以确定最佳操作集。总体而言,这项工作为二元组合问题中二值化方案的选择提供了一种实用方法,并为该领域的未来研究提供了指导。