Suppr超能文献

具有异质自回归误差的密集纵向数据的多层模型:错误设定的影响及Cholesky变换校正

Multilevel Models for Intensive Longitudinal Data with Heterogeneous Autoregressive Errors: The Effect of Misspecification and Correction with Cholesky Transformation.

作者信息

Jahng Seungmin, Wood Phillip K

机构信息

Department of Psychology, Sungkyunkwan University Seoul, South Korea.

Department of Psychological Sciences, University of Missouri Columbia, MO, USA.

出版信息

Front Psychol. 2017 Feb 24;8:262. doi: 10.3389/fpsyg.2017.00262. eCollection 2017.

Abstract

Intensive longitudinal studies, such as ecological momentary assessment studies using electronic diaries, are gaining popularity across many areas of psychology. Multilevel models (MLMs) are most widely used analytical tools for intensive longitudinal data (ILD). Although ILD often have individually distinct patterns of serial correlation of measures over time, inferences of the fixed effects, and random components in MLMs are made under the assumption that all variance and autocovariance components are homogenous across individuals. In the present study, we introduced a multilevel model with Cholesky transformation to model ILD with individually heterogeneous covariance structure. In addition, the performance of the transformation method and the effects of misspecification of heterogeneous covariance structure were investigated through a Monte Carlo simulation. We found that, if individually heterogeneous covariances are incorrectly assumed as homogenous independent or homogenous autoregressive, MLMs produce highly biased estimates of the variance of random intercepts and the standard errors of the fixed intercept and the fixed effect of a level 2 covariate when the average autocorrelation is high. For intensive longitudinal data with individual specific residual covariance, the suggested transformation method showed lower bias in those estimates than the misspecified models when the number of repeated observations within individuals is 50 or more.

摘要

密集纵向研究,比如使用电子日记的生态瞬时评估研究,在心理学的许多领域越来越受欢迎。多层模型(MLMs)是密集纵向数据(ILD)最广泛使用的分析工具。尽管ILD通常在测量随时间的序列相关性上有个体独特的模式,但在多层模型中对固定效应和随机成分的推断是在所有方差和自协方差成分在个体间是同质的假设下进行的。在本研究中,我们引入了一种带有乔列斯基变换的多层模型,以对具有个体异质协方差结构的ILD进行建模。此外,通过蒙特卡洛模拟研究了变换方法的性能以及异质协方差结构误设的影响。我们发现,如果将个体异质协方差错误地假定为同质独立或同质自回归,当平均自相关性较高时,多层模型会对随机截距的方差以及固定截距和二级协变量固定效应的标准误产生高度有偏估计。对于具有个体特定残差协方差的密集纵向数据,当个体内重复观测次数为50次或更多时,建议的变换方法在这些估计中比误设模型显示出更低的偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9173/5323419/0cd14cbb9cda/fpsyg-08-00262-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验