Suppr超能文献

尿路上皮膀胱癌候选生物标志物的大规模尿液SRM筛查

Large-Scale SRM Screen of Urothelial Bladder Cancer Candidate Biomarkers in Urine.

作者信息

Duriez Elodie, Masselon Christophe D, Mesmin Cédric, Court Magali, Demeure Kevin, Allory Yves, Malats Núria, Matondo Mariette, Radvanyi François, Garin Jérôme, Domon Bruno

机构信息

Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health , 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg.

Univ. Grenoble Alpes , BIG-BGE, F-38000 Grenoble, France.

出版信息

J Proteome Res. 2017 Apr 7;16(4):1617-1631. doi: 10.1021/acs.jproteome.6b00979. Epub 2017 Mar 23.

Abstract

Urothelial bladder cancer is a condition associated with high recurrence and substantial morbidity and mortality. Noninvasive urinary tests that would detect bladder cancer and tumor recurrence are required to significantly improve patient care. Over the past decade, numerous bladder cancer candidate biomarkers have been identified in the context of extensive proteomics or transcriptomics studies. To translate these findings in clinically useful biomarkers, the systematic evaluation of these candidates remains the bottleneck. Such evaluation involves large-scale quantitative LC-SRM (liquid chromatography-selected reaction monitoring) measurements, targeting hundreds of signature peptides by monitoring thousands of transitions in a single analysis. The design of highly multiplexed SRM analyses is driven by several factors: throughput, robustness, selectivity and sensitivity. Because of the complexity of the samples to be analyzed, some measurements (transitions) can be interfered by coeluting isobaric species resulting in biased or inconsistent estimated peptide/protein levels. Thus the assessment of the quality of SRM data is critical to allow flagging these inconsistent data. We describe an efficient and robust method to process large SRM data sets, including the processing of the raw data, the detection of low-quality measurements, the normalization of the signals for each protein, and the estimation of protein levels. Using this methodology, a variety of proteins previously associated with bladder cancer have been assessed through the analysis of urine samples from a large cohort of cancer patients and corresponding controls in an effort to establish a priority list of most promising candidates to guide subsequent clinical validation studies.

摘要

尿路上皮膀胱癌是一种与高复发率以及严重的发病率和死亡率相关的疾病。需要能够检测膀胱癌和肿瘤复发的非侵入性尿液检测方法,以显著改善患者护理。在过去十年中,在广泛的蛋白质组学或转录组学研究背景下,已经鉴定出许多膀胱癌候选生物标志物。要将这些发现转化为临床上有用的生物标志物,对这些候选物进行系统评估仍然是瓶颈。这种评估涉及大规模定量液相色谱-选择反应监测(LC-SRM)测量,通过在单次分析中监测数千个跃迁来靶向数百个特征肽。高度多重SRM分析的设计受几个因素驱动:通量、稳健性、选择性和灵敏度。由于待分析样品的复杂性,一些测量(跃迁)可能会受到共洗脱等压物质的干扰,导致肽/蛋白质水平估计有偏差或不一致。因此,评估SRM数据的质量对于标记这些不一致的数据至关重要。我们描述了一种高效且稳健的方法来处理大型SRM数据集,包括原始数据处理、低质量测量检测、每种蛋白质信号的归一化以及蛋白质水平估计。使用这种方法,通过分析来自大量癌症患者队列和相应对照的尿液样本,对多种先前与膀胱癌相关的蛋白质进行了评估,以建立最有希望的候选物优先级列表,为后续临床验证研究提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验