Suppr超能文献

基于质谱的蛋白质基因组学的临床潜力。

Clinical potential of mass spectrometry-based proteogenomics.

机构信息

Department of Molecular and Human Genetics, Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.

Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.

出版信息

Nat Rev Clin Oncol. 2019 Apr;16(4):256-268. doi: 10.1038/s41571-018-0135-7.

Abstract

Cancer genomics research aims to advance personalized oncology by finding and targeting specific genetic alterations associated with cancers. In genome-driven oncology, treatments are selected for individual patients on the basis of the findings of tumour genome sequencing. This personalized approach has prolonged the survival of subsets of patients with cancer. However, many patients do not respond to the predicted therapies based on the genomic profiles of their tumours. Furthermore, studies pairing genomic and proteomic analyses of samples from the same tumours have shown that the proteome contains novel information that cannot be discerned through genomic analysis alone. This observation has led to the concept of proteogenomics, in which both types of data are leveraged for a more complete view of tumour biology that might enable patients to be more successfully matched to effective treatments than they would using genomics alone. In this Perspective, we discuss the added value of proteogenomics over the current genome-driven approach to the clinical characterization of cancers and summarize current efforts to incorporate targeted proteomic measurements based on selected/multiple reaction monitoring (SRM/MRM) mass spectrometry into the clinical laboratory to facilitate clinical proteogenomics.

摘要

癌症基因组学研究旨在通过寻找和靶向与癌症相关的特定遗传改变来推进肿瘤个体化治疗。在基于基因组的肿瘤学中,根据肿瘤基因组测序的结果为个体患者选择治疗方法。这种个体化方法延长了部分癌症患者的生存期。然而,许多患者对基于肿瘤基因组图谱预测的治疗方法没有反应。此外,对来自同一肿瘤的基因组和蛋白质组分析样本进行的研究表明,蛋白质组包含通过单独的基因组分析无法识别的新信息。这一观察结果催生了蛋白质基因组学的概念,即利用这两种类型的数据来更全面地了解肿瘤生物学,这可能使患者比仅使用基因组学更成功地匹配到有效治疗方法。在本观点文章中,我们讨论了蛋白质基因组学相对于当前基于基因组的癌症临床特征分析方法的附加价值,并总结了当前将基于选择/多重反应监测(SRM/MRM)质谱的靶向蛋白质组测量纳入临床实验室以促进临床蛋白质基因组学的努力。

相似文献

1
Clinical potential of mass spectrometry-based proteogenomics.
Nat Rev Clin Oncol. 2019 Apr;16(4):256-268. doi: 10.1038/s41571-018-0135-7.
2
Proteogenomics drives therapeutic hypothesis generation for precision oncology.
Br J Cancer. 2021 Jul;125(1):1-3. doi: 10.1038/s41416-021-01346-5. Epub 2021 Mar 25.
3
Proteogenomics for understanding oncology: recent advances and future prospects.
Expert Rev Proteomics. 2016;13(3):297-308. doi: 10.1586/14789450.2016.1136217. Epub 2016 Jan 25.
4
Phenotyping Tumor Heterogeneity through Proteogenomics: Study Models and Challenges.
Int J Mol Sci. 2024 Aug 14;25(16):8830. doi: 10.3390/ijms25168830.
5
The next horizon in precision oncology: Proteogenomics to inform cancer diagnosis and treatment.
Cell. 2021 Apr 1;184(7):1661-1670. doi: 10.1016/j.cell.2021.02.055.
6
Cancer proteogenomics: current impact and future prospects.
Nat Rev Cancer. 2022 May;22(5):298-313. doi: 10.1038/s41568-022-00446-5. Epub 2022 Mar 2.
7
Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine.
Annu Rev Pharmacol Toxicol. 2024 Jan 23;64:455-479. doi: 10.1146/annurev-pharmtox-022723-113921. Epub 2023 Sep 22.
8
Onco-proteogenomics: Multi-omics level data integration for accurate phenotype prediction.
Crit Rev Clin Lab Sci. 2017 Sep;54(6):414-432. doi: 10.1080/10408363.2017.1384446. Epub 2017 Oct 12.
9
Proteogenomics: From next-generation sequencing (NGS) and mass spectrometry-based proteomics to precision medicine.
Clin Chim Acta. 2019 Nov;498:38-46. doi: 10.1016/j.cca.2019.08.010. Epub 2019 Aug 14.
10
Proteogenomics: Key Driver for Clinical Discovery and Personalized Medicine.
Adv Exp Med Biol. 2016;926:21-47. doi: 10.1007/978-3-319-42316-6_3.

引用本文的文献

1
2
Integrative multi-omics characterization of 12 syngeneic mouse models.
iScience. 2025 Jun 27;28(8):113024. doi: 10.1016/j.isci.2025.113024. eCollection 2025 Aug 15.
3
Recommendations on biomarker assay validation (BAV) in tissues by GCC.
Bioanalysis. 2025 Apr;17(7):429-438. doi: 10.1080/17576180.2025.2471243. Epub 2025 Apr 18.
4
Developing T Cell Epitope-Based Vaccines Against Infection: Challenging but Worthwhile.
Vaccines (Basel). 2025 Jan 28;13(2):135. doi: 10.3390/vaccines13020135.
5
Opportunities for predictive proteogenomic biomarkers of drug treatment sensitivity in epithelial ovarian cancer.
Front Oncol. 2025 Jan 7;14:1503107. doi: 10.3389/fonc.2024.1503107. eCollection 2024.
7
Proteogenomic characterization of highly enriched viable leukemic blasts in acute myeloid leukemia: A SWOG report.
EJHaem. 2024 Oct 25;5(6):1243-1251. doi: 10.1002/jha2.1041. eCollection 2024 Dec.
8
Unveiling the role of transgelin as a prognostic and therapeutic target in kidney fibrosis via a proteomic approach.
Exp Mol Med. 2024 Oct;56(10):2296-2308. doi: 10.1038/s12276-024-01319-7. Epub 2024 Oct 7.
9
Attracting Computational Researchers to Proteomics.
J Am Soc Mass Spectrom. 2024 Oct 2;35(10):2544-2546. doi: 10.1021/jasms.4c00185. Epub 2024 Aug 30.
10
Targeted Mass Spectrometry for Quantification of Receptor Tyrosine Kinase Signaling.
Methods Mol Biol. 2024;2823:253-267. doi: 10.1007/978-1-0716-3922-1_16.

本文引用的文献

1
Facile carrier-assisted targeted mass spectrometric approach for proteomic analysis of low numbers of mammalian cells.
Commun Biol. 2018 Aug 6;1:103. doi: 10.1038/s42003-018-0107-6. eCollection 2018.
2
Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia.
Nature. 2018 Sep;561(7721):127-131. doi: 10.1038/s41586-018-0465-8. Epub 2018 Aug 27.
3
Proteogenomic Analysis of Surgically Resected Lung Adenocarcinoma.
J Thorac Oncol. 2018 Oct;13(10):1519-1529. doi: 10.1016/j.jtho.2018.06.025. Epub 2018 Jul 11.
4
Comprehensive Single-Shot Proteomics with FAIMS on a Hybrid Orbitrap Mass Spectrometer.
Anal Chem. 2018 Aug 7;90(15):9529-9537. doi: 10.1021/acs.analchem.8b02233. Epub 2018 Jul 18.
5
MRMAssayDB: an integrated resource for validated targeted proteomics assays.
Bioinformatics. 2018 Oct 15;34(20):3566-3571. doi: 10.1093/bioinformatics/bty385.
6
BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes.
Nat Methods. 2018 Jun;15(6):440-448. doi: 10.1038/s41592-018-0003-5. Epub 2018 May 7.
8
Targeted mass spectrometry enables robust quantification of FANCD2 mono-ubiquitination in response to DNA damage.
DNA Repair (Amst). 2018 May;65:47-53. doi: 10.1016/j.dnarep.2018.03.003. Epub 2018 Mar 21.
9
Novel RNA-Affinity Proteogenomics Dissects Tumor Heterogeneity for Revealing Personalized Markers in Precision Prognosis of Cancer.
Cell Chem Biol. 2018 May 17;25(5):619-633.e5. doi: 10.1016/j.chembiol.2018.01.016. Epub 2018 Mar 1.
10
Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow.
Nat Commun. 2018 Mar 2;9(1):903. doi: 10.1038/s41467-018-03311-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验