Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.
MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
Nat Microbiol. 2017 Mar 13;2:17031. doi: 10.1038/nmicrobiol.2017.31.
Malaria control is heavily dependent on chemotherapeutic agents for disease prevention and drug treatment. Defining the mechanism of action for licensed drugs, for which no target is characterized, is critical to the development of their second-generation derivatives to improve drug potency towards inhibition of their molecular targets. Mefloquine is a widely used antimalarial without a known mode of action. Here, we demonstrate that mefloquine is a protein synthesis inhibitor. We solved a 3.2 Å cryo-electron microscopy structure of the Plasmodium falciparum 80S ribosome with the (+)-mefloquine enantiomer bound to the ribosome GTPase-associated centre. Mutagenesis of mefloquine-binding residues generates parasites with increased resistance, confirming the parasite-killing mechanism. Furthermore, structure-guided derivatives with an altered piperidine group, predicted to improve binding, show enhanced parasiticidal effect. These data reveal one possible mode of action for mefloquine and demonstrate the vast potential of cryo-electron microscopy to guide the development of mefloquine derivatives to inhibit parasite protein synthesis.
疟疾控制在很大程度上依赖于化学治疗剂来预防疾病和进行药物治疗。对于已获得许可但尚未确定靶点的药物,明确其作用机制对于开发其第二代衍生物以提高对其分子靶标的抑制作用至关重要。甲氟喹是一种广泛使用的抗疟药物,但其作用机制尚不清楚。本研究表明,甲氟喹是一种蛋白质合成抑制剂。我们解析了与 (+)-甲氟喹对映体结合的恶性疟原虫 80S 核糖体的 3.2 Å 冷冻电镜结构,该对映体结合在核糖体 GTPase 相关中心。甲氟喹结合残基的突变会产生抗药性增加的寄生虫,证实了其杀伤寄生虫的机制。此外,结构导向的哌啶基团衍生化合物具有更好的结合预测,显示出更强的杀寄生虫效果。这些数据揭示了甲氟喹的一种可能作用模式,并证明了冷冻电镜在指导甲氟喹衍生物开发以抑制寄生虫蛋白质合成方面具有巨大的潜力。