Johns Hopkins University, Department of Neuroscience, 3400 N. Charles St., Baltimore, MD 21205, USA.
J Neurophysiol. 2010 Dec;104(6):3691-704. doi: 10.1152/jn.01073.2009. Epub 2010 Jun 16.
Fluorescent calcium indicators are becoming increasingly popular as a means for observing the spiking activity of large neuronal populations. Unfortunately, extracting the spike train of each neuron from a raw fluorescence movie is a nontrivial problem. This work presents a fast nonnegative deconvolution filter to infer the approximately most likely spike train of each neuron, given the fluorescence observations. This algorithm outperforms optimal linear deconvolution (Wiener filtering) on both simulated and biological data. The performance gains come from restricting the inferred spike trains to be positive (using an interior-point method), unlike the Wiener filter. The algorithm runs in linear time, and is fast enough that even when simultaneously imaging >100 neurons, inference can be performed on the set of all observed traces faster than real time. Performing optimal spatial filtering on the images further refines the inferred spike train estimates. Importantly, all the parameters required to perform the inference can be estimated using only the fluorescence data, obviating the need to perform joint electrophysiological and imaging calibration experiments.
荧光钙指示剂作为观察大神经元群体尖峰活动的一种手段,越来越受欢迎。然而,从原始荧光电影中提取每个神经元的尖峰序列是一个非平凡的问题。本工作提出了一种快速的非负反卷积滤波器,用于推断给定荧光观测值的每个神经元的近似最可能的尖峰序列。该算法在模拟和生物数据上均优于最佳线性反卷积(维纳滤波)。性能的提高来自于将推断的尖峰序列限制为正(使用内点法),与维纳滤波器不同。该算法的运行时间为线性时间,速度足够快,即使同时对 >100 个神经元进行成像,也可以在比实时更快的速度上对所有观察到的轨迹进行推断。对图像进行最佳的空间滤波进一步细化了推断的尖峰序列估计。重要的是,执行推断所需的所有参数都可以仅使用荧光数据进行估计,从而无需执行联合电生理和成像校准实验。