Suppr超能文献

快速非负解卷用于从群体钙成像推断尖峰序列。

Fast nonnegative deconvolution for spike train inference from population calcium imaging.

机构信息

Johns Hopkins University, Department of Neuroscience, 3400 N. Charles St., Baltimore, MD 21205, USA.

出版信息

J Neurophysiol. 2010 Dec;104(6):3691-704. doi: 10.1152/jn.01073.2009. Epub 2010 Jun 16.

Abstract

Fluorescent calcium indicators are becoming increasingly popular as a means for observing the spiking activity of large neuronal populations. Unfortunately, extracting the spike train of each neuron from a raw fluorescence movie is a nontrivial problem. This work presents a fast nonnegative deconvolution filter to infer the approximately most likely spike train of each neuron, given the fluorescence observations. This algorithm outperforms optimal linear deconvolution (Wiener filtering) on both simulated and biological data. The performance gains come from restricting the inferred spike trains to be positive (using an interior-point method), unlike the Wiener filter. The algorithm runs in linear time, and is fast enough that even when simultaneously imaging >100 neurons, inference can be performed on the set of all observed traces faster than real time. Performing optimal spatial filtering on the images further refines the inferred spike train estimates. Importantly, all the parameters required to perform the inference can be estimated using only the fluorescence data, obviating the need to perform joint electrophysiological and imaging calibration experiments.

摘要

荧光钙指示剂作为观察大神经元群体尖峰活动的一种手段,越来越受欢迎。然而,从原始荧光电影中提取每个神经元的尖峰序列是一个非平凡的问题。本工作提出了一种快速的非负反卷积滤波器,用于推断给定荧光观测值的每个神经元的近似最可能的尖峰序列。该算法在模拟和生物数据上均优于最佳线性反卷积(维纳滤波)。性能的提高来自于将推断的尖峰序列限制为正(使用内点法),与维纳滤波器不同。该算法的运行时间为线性时间,速度足够快,即使同时对 >100 个神经元进行成像,也可以在比实时更快的速度上对所有观察到的轨迹进行推断。对图像进行最佳的空间滤波进一步细化了推断的尖峰序列估计。重要的是,执行推断所需的所有参数都可以仅使用荧光数据进行估计,从而无需执行联合电生理和成像校准实验。

相似文献

1
Fast nonnegative deconvolution for spike train inference from population calcium imaging.
J Neurophysiol. 2010 Dec;104(6):3691-704. doi: 10.1152/jn.01073.2009. Epub 2010 Jun 16.
2
Deconvolution of calcium imaging data using marked point processes.
PLoS Comput Biol. 2020 Mar 12;16(3):e1007650. doi: 10.1371/journal.pcbi.1007650. eCollection 2020 Mar.
3
Fast online deconvolution of calcium imaging data.
PLoS Comput Biol. 2017 Mar 14;13(3):e1005423. doi: 10.1371/journal.pcbi.1005423. eCollection 2017 Mar.
4
An overview of Bayesian methods for neural spike train analysis.
Comput Intell Neurosci. 2013;2013:251905. doi: 10.1155/2013/251905. Epub 2013 Nov 17.
5
Robustness of Spike Deconvolution for Neuronal Calcium Imaging.
J Neurosci. 2018 Sep 12;38(37):7976-7985. doi: 10.1523/JNEUROSCI.3339-17.2018. Epub 2018 Aug 6.
6
Blind deconvolution for spike inference from fluorescence recordings.
J Neurosci Methods. 2020 Aug 1;342:108763. doi: 10.1016/j.jneumeth.2020.108763. Epub 2020 May 30.
7
Benchmarking Spike Rate Inference in Population Calcium Imaging.
Neuron. 2016 May 4;90(3):471-82. doi: 10.1016/j.neuron.2016.04.014.
8
Multivariate autoregressive modeling and granger causality analysis of multiple spike trains.
Comput Intell Neurosci. 2010;2010:752428. doi: 10.1155/2010/752428. Epub 2010 Apr 29.
9
Decoding Poisson spike trains by Gaussian filtering.
Neural Comput. 2010 May;22(5):1245-71. doi: 10.1162/neco.2009.07-08-823.

引用本文的文献

1
TIME-VARYING OPTIMIZATION FOR SPIKE INFERENCE FROM MULTI-TRIAL CALCIUM RECORDINGS.
Data Sci Sci. 2024;3(1). doi: 10.1080/26941899.2024.2407770. Epub 2024 Nov 5.
2
Thalamocortical feedback selectively controls pyramidal neuron excitability.
Nat Commun. 2025 Jul 1;16(1):5663. doi: 10.1038/s41467-025-60835-w.
3
Homeostasis of a representational map in the neocortex.
Nat Neurosci. 2025 Jun 5. doi: 10.1038/s41593-025-01982-7.
4
Precise calcium-to-spike inference using biophysical generative models.
Res Sq. 2025 Apr 24:rs.3.rs-6017950. doi: 10.21203/rs.3.rs-6017950/v1.
5
Pathway-like Activation of 3D Neuronal Constructs with an Optical Interface.
Biosensors (Basel). 2025 Mar 12;15(3):179. doi: 10.3390/bios15030179.
7
Recurrent activity propagates through labile ensembles in macaque dorsolateral prefrontal microcircuits.
Curr Biol. 2025 Jan 20;35(2):431-443.e4. doi: 10.1016/j.cub.2024.11.069. Epub 2025 Jan 6.
8
Mesoscale functional architecture in medial posterior parietal cortex.
bioRxiv. 2024 Dec 2:2023.08.27.555017. doi: 10.1101/2023.08.27.555017.
9
Early and late place cells during postnatal development of the hippocampus.
Nat Commun. 2024 Nov 21;15(1):10075. doi: 10.1038/s41467-024-54320-z.
10
Temporal dynamics of nucleus accumbens neurons in male mice during reward seeking.
Nat Commun. 2024 Oct 28;15(1):9285. doi: 10.1038/s41467-024-53690-8.

本文引用的文献

1
High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision.
Nat Methods. 2010 May;7(5):399-405. doi: 10.1038/nmeth.1453. Epub 2010 Apr 18.
2
Quantitative estimation of calcium dynamics from ratiometric measurements: a direct, nonratioing method.
J Neurophysiol. 2010 Feb;103(2):1130-44. doi: 10.1152/jn.00414.2009. Epub 2009 Dec 2.
3
Automated analysis of cellular signals from large-scale calcium imaging data.
Neuron. 2009 Sep 24;63(6):747-60. doi: 10.1016/j.neuron.2009.08.009.
4
A new look at state-space models for neural data.
J Comput Neurosci. 2010 Aug;29(1-2):107-126. doi: 10.1007/s10827-009-0179-x. Epub 2009 Aug 1.
5
Spike inference from calcium imaging using sequential Monte Carlo methods.
Biophys J. 2009 Jul 22;97(2):636-55. doi: 10.1016/j.bpj.2008.08.005.
6
A genetically encoded calcium indicator for chronic in vivo two-photon imaging.
Nat Methods. 2008 Sep;5(9):805-11. doi: 10.1038/nmeth.1243.
7
Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor.
Nat Methods. 2008 Sep;5(9):797-804. doi: 10.1038/nmeth.1242.
8
UP states protect ongoing cortical activity from thalamic inputs.
PLoS One. 2008;3(12):e3971. doi: 10.1371/journal.pone.0003971. Epub 2008 Dec 18.
9
Fast and accurate detection of action potentials from somatic calcium fluctuations.
J Neurophysiol. 2008 Sep;100(3):1668-76. doi: 10.1152/jn.00084.2008. Epub 2008 Jul 2.
10
Population imaging of ongoing neuronal activity in the visual cortex of awake rats.
Nat Neurosci. 2008 Jul;11(7):749-51. doi: 10.1038/nn.2140. Epub 2008 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验