School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Great Britain.
Angew Chem Int Ed Engl. 2017 Apr 3;56(15):4347-4350. doi: 10.1002/anie.201609557. Epub 2017 Mar 13.
Artemisinin from the plant Artemisia annua is the most potent pharmaceutical for the treatment of malaria. In the plant, the sesquiterpene cyclase amorphadiene synthase, a cytochrome-dependent CYP450, and an aldehyde reductase convert farnesyl diphosphate (FDP) into dihydroartemisinic aldehyde (DHAAl), which is a key intermediate in the biosynthesis of artemisinin and a semisynthetic precursor for its chemical synthesis. Here, we report a chemoenzymatic process that is able to deliver DHAAl using only the sesquiterpene synthase from a carefully designed hydroxylated FDP derivative. This process, which reverses the natural order of cyclization of FDP and oxidation of the sesquiterpene hydrocarbon, provides a significant improvement in the synthesis of DHAAl and demonstrates the potential of substrate engineering in the terpene synthase mediated synthesis of high-value natural products.
青蒿素是从植物黄花蒿中提取的最有效的抗疟疾药物。在植物中,倍半萜环化酶青蒿二烯合酶、细胞色素依赖的 CYP450 和醛还原酶将法呢基二磷酸(FDP)转化为二氢青蒿醛(DHAAl),这是青蒿素生物合成的关键中间体,也是其化学合成的半合成前体。在这里,我们报告了一种化学酶促过程,仅使用精心设计的羟基化 FDP 衍生物中的倍半萜烯合酶就能提供 DHAAl。该过程逆转了 FDP 的环化和倍半萜烃的氧化的自然顺序,显著改善了 DHAAl 的合成,并展示了在萜烯合酶介导的高价值天然产物合成中底物工程的潜力。