Suppr超能文献

创建心脏 4D 流 MRI 的血液动力学图谱。

Creating hemodynamic atlases of cardiac 4D flow MRI.

机构信息

Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.

Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.

出版信息

J Magn Reson Imaging. 2017 Nov;46(5):1389-1399. doi: 10.1002/jmri.25691. Epub 2017 Mar 13.

Abstract

PURPOSE

Hemodynamic atlases can add to the pathophysiological understanding of cardiac diseases. This study proposes a method to create hemodynamic atlases using 4D Flow magnetic resonance imaging (MRI). The method is demonstrated for kinetic energy (KE) and helicity density (H ).

MATERIALS AND METHODS

Thirteen healthy subjects underwent 4D Flow MRI at 3T. Phase-contrast magnetic resonance cardioangiographies (PC-MRCAs) and an average heart were created and segmented. The PC-MRCAs, KE, and H were nonrigidly registered to the average heart to create atlases. The method was compared with 1) rigid, 2) affine registration of the PC-MRCAs, and 3) affine registration of segmentations. The peak and mean KE and H before and after registration were calculated to evaluate interpolation error due to nonrigid registration.

RESULTS

The segmentations deformed using nonrigid registration overlapped (median: 92.3%) more than rigid (23.1%, P < 0.001), and affine registration of PC-MRCAs (38.5%, P < 0.001) and affine registration of segmentations (61.5%, P < 0.001). The peak KE was 4.9 mJ using the proposed method and affine registration of segmentations (P = 0.91), 3.5 mJ using rigid registration (P < 0.001), and 4.2 mJ using affine registration of the PC-MRCAs (P < 0.001). The mean KE was 1.1 mJ using the proposed method, 0.8 mJ using rigid registration (P < 0.001), 0.9 mJ using affine registration of the PC-MRCAs (P < 0.001), and 1.0 mJ using affine registration of segmentations (P = 0.028). The interpolation error was 5.2 ± 2.6% at mid-systole, 2.8 ± 3.8% at early diastole for peak KE; 9.6 ± 9.3% at mid-systole, 4.0 ± 4.6% at early diastole, and 4.9 ± 4.6% at late diastole for peak H . The mean KE and H were not affected by interpolation.

CONCLUSION

Hemodynamic atlases can be obtained with minimal user interaction using nonrigid registration of 4D Flow MRI.

LEVEL OF EVIDENCE

2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1389-1399.

摘要

目的

血流动力学图谱可以增加对心脏疾病病理生理学的理解。本研究提出了一种使用 4D Flow 磁共振成像(MRI)创建血流动力学图谱的方法。该方法用于展示动能(KE)和螺旋密度(H)。

材料和方法

13 名健康受试者在 3T 下进行 4D Flow MRI。创建并分割相位对比磁共振心血管造影术(PC-MRCAs)和平均心脏。将 PC-MRCAs、KE 和 H 非刚性地注册到平均心脏以创建图谱。该方法与 1)刚性、2)PC-MRCAs 的仿射注册和 3)分割的仿射注册进行了比较。计算注册前后的峰值和平均 KE 和 H,以评估由于非刚性注册引起的插值误差。

结果

使用非刚性注册的分割变形(中位数:92.3%)比刚性(23.1%,P < 0.001)和 PC-MRCAs 的仿射注册(38.5%,P < 0.001)以及分割的仿射注册(61.5%,P < 0.001)更多地重叠。使用所提出的方法和分割的仿射注册的峰值 KE 为 4.9 mJ(P = 0.91),使用刚性注册为 3.5 mJ(P < 0.001),使用 PC-MRCAs 的仿射注册为 4.2 mJ(P < 0.001)。使用所提出的方法的平均 KE 为 1.1 mJ,使用刚性注册为 0.8 mJ(P < 0.001),使用 PC-MRCAs 的仿射注册为 0.9 mJ(P < 0.001),使用分割的仿射注册为 1.0 mJ(P = 0.028)。峰值 KE 的插值误差为中收缩期 5.2±2.6%,早期舒张期 2.8±3.8%;中期收缩期 9.6±9.3%,早期舒张期 4.0±4.6%,晚期舒张期 4.9±4.6%,峰值 H。平均 KE 和 H 不受插值影响。

结论

使用 4D Flow MRI 的非刚性注册,可以最少的用户交互获得血流动力学图谱。

证据水平

2 技术功效:第 1 阶段 J. Magn. Reson. Imaging 2017;46:1389-1399.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f7/5655727/410602dbe818/JMRI-46-1389-g001.jpg

相似文献

1
Creating hemodynamic atlases of cardiac 4D flow MRI.
J Magn Reson Imaging. 2017 Nov;46(5):1389-1399. doi: 10.1002/jmri.25691. Epub 2017 Mar 13.
2
Hemodynamic interplay of vorticity, viscous energy loss, and kinetic energy from 4D Flow MRI and link to cardiac function in healthy subjects and Fontan patients.
Am J Physiol Heart Circ Physiol. 2021 Apr 1;320(4):H1687-H1698. doi: 10.1152/ajpheart.00806.2020. Epub 2021 Feb 26.
3
Left and right ventricular kinetic energy using time-resolved versus time-average ventricular volumes.
J Magn Reson Imaging. 2017 Mar;45(3):821-828. doi: 10.1002/jmri.25416. Epub 2016 Aug 9.
4
Quantification of left and right atrial kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements.
J Appl Physiol (1985). 2013 May 15;114(10):1472-81. doi: 10.1152/japplphysiol.00932.2012. Epub 2013 Mar 14.
5
Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements.
Am J Physiol Heart Circ Physiol. 2012 Feb 15;302(4):H893-900. doi: 10.1152/ajpheart.00942.2011. Epub 2011 Dec 16.
8
4D flow MRI can detect subtle right ventricular dysfunction in primary left ventricular disease.
J Magn Reson Imaging. 2016 Mar;43(3):558-65. doi: 10.1002/jmri.25015. Epub 2015 Jul 24.
10
Altered Diastolic Flow Patterns and Kinetic Energy in Subtle Left Ventricular Remodeling and Dysfunction Detected by 4D Flow MRI.
PLoS One. 2016 Aug 17;11(8):e0161391. doi: 10.1371/journal.pone.0161391. eCollection 2016.

引用本文的文献

1
Environmental changes surrounding congenital heart disease.
Clin Exp Pediatr. 2023 Aug;66(8):332-338. doi: 10.3345/cep.2022.00976. Epub 2023 Jan 2.
2
SRflow: Deep learning based super-resolution of 4D-flow MRI data.
Front Artif Intell. 2022 Aug 12;5:928181. doi: 10.3389/frai.2022.928181. eCollection 2022.
3
Fully automated intracardiac 4D flow MRI post-processing using deep learning for biventricular segmentation.
Eur Radiol. 2022 Aug;32(8):5669-5678. doi: 10.1007/s00330-022-08616-7. Epub 2022 Feb 17.
4
Hemodynamic Parameters for Cardiovascular System in 4D Flow MRI: Mathematical Definition and Clinical Applications.
Magn Reson Med Sci. 2022 Mar 1;21(2):380-399. doi: 10.2463/mrms.rev.2021-0097. Epub 2022 Feb 16.
5
Abdominal applications of quantitative 4D flow MRI.
Abdom Radiol (NY). 2022 Sep;47(9):3229-3250. doi: 10.1007/s00261-021-03352-w. Epub 2021 Nov 27.
6
Hypertrophic Cardiomyopathy Is Associated with Altered Left Ventricular 3D Blood Flow Dynamics.
Radiol Cardiothorac Imaging. 2020 Feb 27;2(1):e190038. doi: 10.1148/ryct.2020190038. eCollection 2020 Feb.
7
Ventricular Flow Field Visualization During Mechanical Circulatory Support in the Assisted Isolated Beating Heart.
Ann Biomed Eng. 2020 Feb;48(2):794-804. doi: 10.1007/s10439-019-02406-x. Epub 2019 Nov 18.
8
Parametric Hemodynamic 4D Flow MRI Maps for the Characterization of Chronic Thoracic Descending Aortic Dissection.
J Magn Reson Imaging. 2020 May;51(5):1357-1368. doi: 10.1002/jmri.26986. Epub 2019 Nov 12.
9
Optimization of Left Atrial Appendage Occluder Implantation Using Interactive and Modeling Tools.
Front Physiol. 2019 Mar 22;10:237. doi: 10.3389/fphys.2019.00237. eCollection 2019.

本文引用的文献

2
Altered Diastolic Flow Patterns and Kinetic Energy in Subtle Left Ventricular Remodeling and Dysfunction Detected by 4D Flow MRI.
PLoS One. 2016 Aug 17;11(8):e0161391. doi: 10.1371/journal.pone.0161391. eCollection 2016.
3
Advanced flow MRI: emerging techniques and applications.
Clin Radiol. 2016 Aug;71(8):779-95. doi: 10.1016/j.crad.2016.01.011. Epub 2016 Mar 2.
6
Determinants of kinetic energy of blood flow in the four-chambered heart in athletes and sedentary controls.
Am J Physiol Heart Circ Physiol. 2016 Jan 1;310(1):H113-22. doi: 10.1152/ajpheart.00544.2015. Epub 2015 Oct 23.
7
4D flow cardiovascular magnetic resonance consensus statement.
J Cardiovasc Magn Reson. 2015 Aug 10;17(1):72. doi: 10.1186/s12968-015-0174-5.
8
Vorticity is a marker of right ventricular diastolic dysfunction.
Am J Physiol Heart Circ Physiol. 2015 Sep 15;309(6):H1087-93. doi: 10.1152/ajpheart.00278.2015. Epub 2015 Aug 7.
9
Hemodynamic and energetic aspects of the left ventricle in patients with mitral regurgitation before and after mitral valve surgery.
J Magn Reson Imaging. 2015 Dec;42(6):1705-12. doi: 10.1002/jmri.24926. Epub 2015 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验