Sankar Tejas, Park Min Tae M, Jawa Tasha, Patel Raihaan, Bhagwat Nikhil, Voineskos Aristotle N, Lozano Andres M, Chakravarty M Mallar
Division of Neurosurgery, Department of Surgery, University of Alberta, Alberta, Canada.
Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
Hum Brain Mapp. 2017 Jun;38(6):2875-2896. doi: 10.1002/hbm.23559. Epub 2017 Mar 15.
Hippocampal atrophy rate-measured using automated techniques applied to structural MRI scans-is considered a sensitive marker of disease progression in Alzheimer's disease, frequently used as an outcome measure in clinical trials. Using publicly accessible data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we examined 1-year hippocampal atrophy rates generated by each of five automated or semiautomated hippocampal segmentation algorithms in patients with Alzheimer's disease, subjects with mild cognitive impairment, or elderly controls. We analyzed MRI data from 398 and 62 subjects available at baseline and at 1 year at MRI field strengths of 1.5 T and 3 T, respectively. We observed a high rate of hippocampal segmentation failures across all algorithms and diagnostic categories, with only 50.8% of subjects at 1.5 T and 58.1% of subjects at 3 T passing stringent segmentation quality control. We also found that all algorithms identified several subjects (between 2.94% and 48.68%) across all diagnostic categories showing increases in hippocampal volume over 1 year. For any given algorithm, hippocampal "growth" could not entirely be explained by excluding patients with flawed hippocampal segmentations, scan-rescan variability, or MRI field strength. Furthermore, different algorithms did not uniformly identify the same subjects as hippocampal "growers," and showed very poor concordance in estimates of magnitude of hippocampal volume change over time (intraclass correlation coefficient 0.319 at 1.5 T and 0.149 at 3 T). This precluded a meaningful analysis of whether hippocampal "growth" represents a true biological phenomenon. Taken together, our findings suggest that longitudinal hippocampal volume change should be interpreted with considerable caution as a biomarker. Hum Brain Mapp 38:2875-2896, 2017. © 2017 Wiley Periodicals, Inc.
海马萎缩率(使用应用于结构磁共振成像扫描的自动化技术测量)被认为是阿尔茨海默病疾病进展的敏感标志物,在临床试验中经常用作结果指标。利用来自阿尔茨海默病神经影像倡议(ADNI)的公开数据,我们检查了阿尔茨海默病患者、轻度认知障碍受试者或老年对照中五种自动化或半自动化海马分割算法各自生成的1年海马萎缩率。我们分别分析了在1.5 T和3 T磁共振成像场强下,基线和1年时可获得的398名和62名受试者的磁共振成像数据。我们观察到所有算法和诊断类别中均存在较高的海马分割失败率,在1.5 T时只有50.8%的受试者以及在3 T时只有58.1%的受试者通过了严格的分割质量控制。我们还发现,所有算法在所有诊断类别中都识别出了几名(2.94%至48.68%之间)海马体积在1年中增加的受试者。对于任何给定算法,海马“生长”不能完全通过排除海马分割有缺陷的患者、扫描 - 重扫变异性或磁共振成像场强来解释。此外,不同算法并非一致地将相同受试者识别为海马“生长者”,并且在海马体积随时间变化幅度的估计中显示出非常低的一致性(在1.5 T时组内相关系数为0.319,在3 T时为0.149)。这使得无法对海马“生长”是否代表一种真正的生物学现象进行有意义的分析。综上所述,我们的研究结果表明,作为生物标志物,纵向海马体积变化的解释应极其谨慎。《人类大脑图谱》38:2875 - 2896,2017年。© 2017威利期刊公司