Nguyen Frank T M, Graham Michael D
Department of Chemical and Biological Engineering University of Wisconsin-Madison, Madison, Wisconsin.
Department of Chemical and Biological Engineering University of Wisconsin-Madison, Madison, Wisconsin.
Biophys J. 2017 Mar 14;112(5):1010-1022. doi: 10.1016/j.bpj.2016.12.051.
Observations of uniflagellar bacteria show that buckling instabilities of the hook protein connecting the cell body and flagellum play a role in locomotion. To understand this phenomenon, we develop models at varying levels of description with a particular focus on the parameter dependence of the buckling instability. A key dimensionless group called the flexibility number measures the hook flexibility relative to the thrust exerted by the flagellum; this parameter and the geometric parameters of the cell determine the stability of straight swimming. Two very simple models amenable to analytical treatment are developed to examine buckling in stationary (pinned) and moving swimmers. We then consider a more detailed model incorporating a helical flagellum and the rotational degrees of freedom of the cell body and flagellum, and we use numerical simulations to map out the parameter dependence of the buckling instability. In all models, a bifurcation occurs as the flexibility number increases, separating equilibrium configurations into straight or bent, and for the full model, separating trajectories into straight or helical. More specifically for the latter, the critical flexibility marks the transition from periodicity to quasi-periodicity in the behavior of variables determining configuration. We also find that for a given body geometry, there is a specific flagellar geometry that minimizes the critical flexibility number at which buckling occurs. These results highlight the role of flexibility in the biology of real organisms and the engineering of artificial microswimmers.
对单鞭毛细菌的观察表明,连接细胞体和鞭毛的钩蛋白的屈曲不稳定性在运动中起作用。为了理解这一现象,我们在不同的描述层次上建立模型,特别关注屈曲不稳定性的参数依赖性。一个关键的无量纲组称为柔韧性数,它衡量钩的柔韧性与鞭毛施加的推力的相对关系;这个参数和细胞的几何参数决定了直线游动的稳定性。我们开发了两个易于进行解析处理的非常简单的模型,以研究静止(固定)和游动的游泳者中的屈曲现象。然后,我们考虑一个更详细的模型,该模型纳入了螺旋鞭毛以及细胞体和鞭毛的旋转自由度,并使用数值模拟来描绘屈曲不稳定性的参数依赖性。在所有模型中,随着柔韧性数的增加会发生分岔,将平衡构型分为直的或弯曲的,对于完整模型,将轨迹分为直的或螺旋的。更具体地说,对于后者,临界柔韧性标志着在决定构型的变量行为中从周期性到准周期性的转变。我们还发现,对于给定的身体几何形状,存在一种特定的鞭毛几何形状,它能使发生屈曲的临界柔韧性数最小化。这些结果突出了柔韧性在真实生物体生物学和人工微游泳器工程中的作用。