Suppr超能文献

白细胞介素-1β诱导核因子κB并上调微小RNA-372以抑制脊髓损伤恢复。

IL-1β-induces NF-κB and upregulates microRNA-372 to inhibit spinal cord injury recovery.

作者信息

Zhou Wei, Yuan Tongzhou, Gao Youshui, Yin Peipei, Liu Wei, Pan Chenhao, Liu Yingjie, Yu Xiaowei

机构信息

Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China.

Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China; and.

出版信息

J Neurophysiol. 2017 Jun 1;117(6):2282-2291. doi: 10.1152/jn.00936.2016. Epub 2017 Mar 15.

Abstract

Excessive inflammation including IL-1β-initiated signaling is among the earlies reactions that can cause neuronal damage following spinal cord injury (SCI). It has been suggested that microRNAs may participate in stem cell repair to facilitate functional recovery following SCI. In this study we have shown that in cultured human neural stem cells (hNSC), IL-1β reduced the expression of both KIF3B (kinesin family member 3B) and NOSIP (nitric oxide synthase-interacting protein), two key modulators for restricting inflammation and promoting neuronal regeneration. The induction of microRNA-372 (miR-372) by IL-1β is specifically responsible for the inhibition of KIF3B and NOSIP. The 3'-untranslated regions (UTRs) of both KIF3B and NOSIP contain targeting sequences to miR-372 that directly inhibit their expression. Moreover, we found that the expression of miR-372 was stimulated in hNSC by IL-1β through an NF-κB binding site at its promoter region. Finally, stable overexpression of miR-372 inhibitor in hNSC rescued the IL-1β-induced impairment as shown by significant improvements in tissue water content, myeloperoxidase activity, and behavioral assessments in SCI rats. These findings suggest a critical role of miR-372 in inflammatory signaling and pinpoint a novel target for the treatment of acute SCI. Our data demonstrate that IL-1β can impair the functional recovery of neural stem cell transplant therapy for spinal cord injury (SCI) treatment in rats. This effect is dependent on microRNA-372 (miR-372)-dependent gene repression of KIF3B and NOSIP. Therefore, specific knockdown of miR-372 may provide benefits for SCI treatments.

摘要

包括白细胞介素 -1β起始信号在内的过度炎症反应是脊髓损伤(SCI)后最早可导致神经元损伤的反应之一。有研究表明,微小RNA可能参与干细胞修复,以促进SCI后的功能恢复。在本研究中,我们发现,在培养的人神经干细胞(hNSC)中,白细胞介素 -1β降低了KIF3B(驱动蛋白家族成员3B)和NOSIP(一氧化氮合酶相互作用蛋白)的表达,这两个是限制炎症和促进神经元再生的关键调节因子。白细胞介素 -1β诱导的微小RNA -372(miR -372)特异性地负责抑制KIF3B和NOSIP。KIF3B和NOSIP的3'非翻译区(UTR)均含有与miR -372的靶向序列,可直接抑制它们的表达。此外,我们发现白细胞介素 -1β通过其启动子区域的NF-κB结合位点刺激hNSC中miR -372的表达。最后,在hNSC中稳定过表达miR -372抑制剂可挽救白细胞介素 -1β诱导的损伤,这在SCI大鼠的组织含水量、髓过氧化物酶活性和行为评估中得到了显著改善。这些发现表明miR -372在炎症信号传导中起关键作用,并确定了急性SCI治疗的新靶点。我们的数据表明,白细胞介素 -1β可损害大鼠脊髓损伤(SCI)治疗中神经干细胞移植治疗的功能恢复。这种作用依赖于miR -372依赖性基因对KIF3B和NOSIP的抑制。因此,特异性敲低miR -372可能对SCI治疗有益。

相似文献

1
IL-1β-induces NF-κB and upregulates microRNA-372 to inhibit spinal cord injury recovery.
J Neurophysiol. 2017 Jun 1;117(6):2282-2291. doi: 10.1152/jn.00936.2016. Epub 2017 Mar 15.
2
miR-136-5p Regulates the Inflammatory Response by Targeting the IKKβ/NF-κB/A20 Pathway After Spinal Cord Injury.
Cell Physiol Biochem. 2018;50(2):512-524. doi: 10.1159/000494165. Epub 2018 Oct 11.
5
Downregulation of miR-199b promotes the acute spinal cord injury through IKKβ-NF-κB signaling pathway activating microglial cells.
Exp Cell Res. 2016 Nov 15;349(1):60-67. doi: 10.1016/j.yexcr.2016.09.020. Epub 2016 Sep 29.
6
Molecular Mechanism of MiR-136-5p Targeting NF-κB/A20 in the IL-17-Mediated Inflammatory Response after Spinal Cord Injury.
Cell Physiol Biochem. 2017;44(3):1224-1241. doi: 10.1159/000485452. Epub 2017 Nov 28.
7
miR-940 promotes spinal cord injury recovery by inhibiting TLR4/NF-κB pathway-mediated inflammation.
Eur Rev Med Pharmacol Sci. 2019 Apr;23(8):3190-3197. doi: 10.26355/eurrev_201904_17677.
8
MiR-100 suppresses inflammatory activation of microglia and neuronal apoptosis following spinal cord injury via TLR4/NF-κB pathway.
Eur Rev Med Pharmacol Sci. 2019 Oct;23(20):8713-8720. doi: 10.26355/eurrev_201910_19265.
9
Knockdown of miR-130a-3p alleviates spinal cord injury induced neuropathic pain by activating IGF-1/IGF-1R pathway.
J Neuroimmunol. 2021 Feb 15;351:577458. doi: 10.1016/j.jneuroim.2020.577458. Epub 2020 Dec 8.

引用本文的文献

1
The NF-κB Pathway: a Focus on Inflammatory Responses in Spinal Cord Injury.
Mol Neurobiol. 2023 Sep;60(9):5292-5308. doi: 10.1007/s12035-023-03411-x. Epub 2023 Jun 7.
2
Elamipretide reduces pyroptosis and improves functional recovery after spinal cord injury.
CNS Neurosci Ther. 2023 Oct;29(10):2843-2856. doi: 10.1111/cns.14221. Epub 2023 Apr 20.
3
Therapeutic potential of small extracellular vesicles derived from mesenchymal stem cells for spinal cord and nerve injury.
Front Cell Dev Biol. 2023 Mar 22;11:1151357. doi: 10.3389/fcell.2023.1151357. eCollection 2023.
5
Impairment of autophagy after spinal cord injury potentiates neuroinflammation and motor function deficit in mice.
Theranostics. 2022 Jul 11;12(12):5364-5388. doi: 10.7150/thno.72713. eCollection 2022.
7
Topotecan Reduces Neuron Death after Spinal Cord Injury by Suppressing Caspase-1-Dependent Pyroptosis.
Mol Neurobiol. 2022 Oct;59(10):6033-6048. doi: 10.1007/s12035-022-02960-x. Epub 2022 Jul 18.
8
Downregulated KIF3B Induced by miR-605-3p Inhibits the Progression of Colon Cancer via Inactivating Wnt/-Catenin.
J Oncol. 2021 Aug 11;2021:5046981. doi: 10.1155/2021/5046981. eCollection 2021.
9
Micro RNAs in Regulation of Cellular Redox Homeostasis.
Int J Mol Sci. 2021 Jun 2;22(11):6022. doi: 10.3390/ijms22116022.
10
Febuxostat Inhibits MPP+-Induced Inflammatory Response Through Inhibiting the JNK/NF-κB Pathway in Astrocytes.
Neurotox Res. 2021 Jun;39(3):566-574. doi: 10.1007/s12640-020-00316-8. Epub 2021 Jan 14.

本文引用的文献

2
Therapeutic targeting of microRNAs: current status and future challenges.
Nat Rev Drug Discov. 2014 Aug;13(8):622-38. doi: 10.1038/nrd4359. Epub 2014 Jul 11.
3
miRNA expression profiling in a human stem cell-based model as a tool for developmental neurotoxicity testing.
Cell Biol Toxicol. 2013 Aug;29(4):239-57. doi: 10.1007/s10565-013-9250-5. Epub 2013 Aug 1.
4
Molecular basis of NF-κB signaling.
Annu Rev Biophys. 2013;42:443-68. doi: 10.1146/annurev-biophys-083012-130338. Epub 2013 Mar 11.
5
Increased expression of nitric oxide synthase interacting protein (NOSIP) following traumatic spinal cord injury in rats.
J Mol Histol. 2012 Dec;43(6):661-8. doi: 10.1007/s10735-012-9460-9. Epub 2012 Nov 8.
6
Temporal and spatial expression of KIF3B after acute spinal cord injury in adult rats.
J Mol Neurosci. 2013 Feb;49(2):387-94. doi: 10.1007/s12031-012-9901-7. Epub 2012 Oct 24.
7
Spinal trauma in mainland China from 2001 to 2007: an epidemiological study based on a nationwide database.
Spine (Phila Pa 1976). 2012 Jul 1;37(15):1310-5. doi: 10.1097/BRS.0b013e3182474d8b.
8
Increased risk of stroke after spinal cord injury: a nationwide 4-year follow-up cohort study.
Neurology. 2012 Apr 3;78(14):1051-7. doi: 10.1212/WNL.0b013e31824e8eaa. Epub 2012 Feb 29.
9
Sport, free time and hobbies in people with spinal cord injury.
Spinal Cord. 2012 Jun;50(6):452-6. doi: 10.1038/sc.2011.161. Epub 2012 Jan 10.
10
Repertoire of microglial and macrophage responses after spinal cord injury.
Nat Rev Neurosci. 2011 Jun 15;12(7):388-99. doi: 10.1038/nrn3053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验