Suppr超能文献

自我监测血糖测量误差模型。

A Model of Self-Monitoring Blood Glucose Measurement Error.

作者信息

Vettoretti Martina, Facchinetti Andrea, Sparacino Giovanni, Cobelli Claudio

机构信息

1 Department of Information Engineering, University of Padova, Padova, Italy.

出版信息

J Diabetes Sci Technol. 2017 Jul;11(4):724-735. doi: 10.1177/1932296817698498. Epub 2017 Mar 16.

Abstract

BACKGROUND

A reliable model of the probability density function (PDF) of self-monitoring of blood glucose (SMBG) measurement error would be important for several applications in diabetes, like testing in silico insulin therapies. In the literature, the PDF of SMBG error is usually described by a Gaussian function, whose symmetry and simplicity are unable to properly describe the variability of experimental data. Here, we propose a new methodology to derive more realistic models of SMBG error PDF.

METHODS

The blood glucose range is divided into zones where error (absolute or relative) presents a constant standard deviation (SD). In each zone, a suitable PDF model is fitted by maximum-likelihood to experimental data. Model validation is performed by goodness-of-fit tests. The method is tested on two databases collected by the One Touch Ultra 2 (OTU2; Lifescan Inc, Milpitas, CA) and the Bayer Contour Next USB (BCN; Bayer HealthCare LLC, Diabetes Care, Whippany, NJ). In both cases, skew-normal and exponential models are used to describe the distribution of errors and outliers, respectively.

RESULTS

Two zones were identified: zone 1 with constant SD absolute error; zone 2 with constant SD relative error. Goodness-of-fit tests confirmed that identified PDF models are valid and superior to Gaussian models used so far in the literature.

CONCLUSIONS

The proposed methodology allows to derive realistic models of SMBG error PDF. These models can be used in several investigations of present interest in the scientific community, for example, to perform in silico clinical trials to compare SMBG-based with nonadjunctive CGM-based insulin treatments.

摘要

背景

血糖自我监测(SMBG)测量误差概率密度函数(PDF)的可靠模型对于糖尿病的多种应用非常重要,例如计算机模拟胰岛素治疗测试。在文献中,SMBG误差的PDF通常用高斯函数描述,其对称性和简单性无法恰当描述实验数据的变异性。在此,我们提出一种新方法来推导更符合实际的SMBG误差PDF模型。

方法

将血糖范围划分为误差(绝对或相对)呈现恒定标准差(SD)的区域。在每个区域,通过最大似然法将合适的PDF模型拟合到实验数据。通过拟合优度检验进行模型验证。该方法在由One Touch Ultra 2(OTU2;美国加利福尼亚州米尔皮塔斯市LifeScan公司)和拜耳轮廓Next USB(BCN;美国新泽西州惠普尼市拜耳医疗保健有限责任公司糖尿病护理部)收集的两个数据库上进行测试。在这两种情况下,分别使用偏态正态模型和指数模型来描述误差和异常值的分布。

结果

确定了两个区域:区域1具有恒定的SD绝对误差;区域2具有恒定的SD相对误差。拟合优度检验证实所确定的PDF模型是有效的,并且优于文献中迄今使用的高斯模型。

结论

所提出的方法能够推导符合实际的SMBG误差PDF模型。这些模型可用于科学界目前感兴趣的多项研究中,例如,进行计算机模拟临床试验,以比较基于SMBG与基于非辅助性连续血糖监测(CGM)的胰岛素治疗。

相似文献

1
A Model of Self-Monitoring Blood Glucose Measurement Error.自我监测血糖测量误差模型。
J Diabetes Sci Technol. 2017 Jul;11(4):724-735. doi: 10.1177/1932296817698498. Epub 2017 Mar 16.

引用本文的文献

4
Modeling of Diabetes and Its Clinical Impact.糖尿病建模及其临床影响
J Diabetes Sci Technol. 2018 Sep;12(5):976-984. doi: 10.1177/1932296818785642. Epub 2018 Jul 13.

本文引用的文献

1
Regulation Catches Up to Reality.监管跟上现实。
J Diabetes Sci Technol. 2017 Jan;11(1):160-164. doi: 10.1177/1932296816667749. Epub 2016 Sep 25.
8
The UVA/PADOVA Type 1 Diabetes Simulator: New Features.UVA/帕多瓦1型糖尿病模拟器:新特性
J Diabetes Sci Technol. 2014 Jan;8(1):26-34. doi: 10.1177/1932296813514502. Epub 2014 Jan 1.
10
Modeling the glucose sensor error.葡萄糖传感器误差建模。
IEEE Trans Biomed Eng. 2014 Mar;61(3):620-9. doi: 10.1109/TBME.2013.2284023. Epub 2013 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验