Suppr超能文献

静息心肌 CT 灌注在预测有生理意义的冠状动脉疾病中的增量作用:一种机器学习方法。

Incremental role of resting myocardial computed tomography perfusion for predicting physiologically significant coronary artery disease: A machine learning approach.

机构信息

Dalio Institute of Cardiovascular Imaging, Department of Radiology, NewYork-Presbyterian Hospital and the Weill Cornell Medicine, New York, NY, USA.

Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea.

出版信息

J Nucl Cardiol. 2018 Feb;25(1):223-233. doi: 10.1007/s12350-017-0834-y. Epub 2017 Mar 16.

Abstract

BACKGROUND

Evaluation of resting myocardial computed tomography perfusion (CTP) by coronary CT angiography (CCTA) might serve as a useful addition for determining coronary artery disease. We aimed to evaluate the incremental benefit of resting CTP over coronary stenosis for predicting ischemia using a computational algorithm trained by machine learning methods.

METHODS

252 patients underwent CCTA and invasive fractional flow reserve (FFR). CT stenosis was classified as 0%, 1-30%, 31-49%, 50-70%, and >70% maximal stenosis. Significant ischemia was defined as invasive FFR < 0.80. Resting CTP analysis was performed using a gradient boosting classifier for supervised machine learning.

RESULTS

On a per-patient basis, accuracy, sensitivity, specificity, positive predictive, and negative predictive values according to resting CTP when added to CT stenosis (>70%) for predicting ischemia were 68.3%, 52.7%, 84.6%, 78.2%, and 63.0%, respectively. Compared with CT stenosis [area under the receiver operating characteristic curve (AUC): 0.68, 95% confidence interval (CI) 0.62-0.74], the addition of resting CTP appeared to improve discrimination (AUC: 0.75, 95% CI 0.69-0.81, P value .001) and reclassification (net reclassification improvement: 0.52, P value < .001) of ischemia.

CONCLUSIONS

The addition of resting CTP analysis acquired from machine learning techniques may improve the predictive utility of significant ischemia over coronary stenosis.

摘要

背景

通过冠状动脉 CT 血管造影(CCTA)评估静息心肌 CT 灌注(CTP)可能有助于确定冠状动脉疾病。我们旨在通过机器学习方法训练的计算算法评估静息 CTP 相对于冠状动脉狭窄对预测缺血的增量获益。

方法

252 例患者接受 CCTA 和有创性血流储备分数(FFR)检查。CT 狭窄程度分为 0%、1-30%、31-49%、50-70%和>70%最大狭窄。有创性 FFR<0.80 定义为显著缺血。使用梯度提升分类器对静息 CTP 进行分析,用于监督机器学习。

结果

根据静息 CTP 对每个患者进行分析,当添加到 CT 狭窄(>70%)以预测缺血时,其准确性、敏感性、特异性、阳性预测值和阴性预测值分别为 68.3%、52.7%、84.6%、78.2%和 63.0%。与 CT 狭窄相比[受试者工作特征曲线下面积(AUC):0.68,95%置信区间(CI)0.62-0.74],添加静息 CTP 似乎可以提高缺血的区分度(AUC:0.75,95%CI 0.69-0.81,P 值<.001)和重新分类(净重新分类改善:0.52,P 值<.001)。

结论

从机器学习技术获得的静息 CTP 分析的添加可能会提高对显著缺血相对于冠状动脉狭窄的预测效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验