Waller Niels G, Feuerstahler Leah
a University of Minnesota-Twin Cities.
Multivariate Behav Res. 2017 May-Jun;52(3):350-370. doi: 10.1080/00273171.2017.1292893. Epub 2017 Mar 17.
In this study, we explored item and person parameter recovery of the four-parameter model (4PM) in over 24,000 real, realistic, and idealized data sets. In the first analyses, we fit the 4PM and three alternative models to data from three Minnesota Multiphasic Personality Inventory-Adolescent form factor scales using Bayesian modal estimation (BME). Our results indicated that the 4PM fits these scales better than simpler item Response Theory (IRT) models. Next, using the parameter estimates from these real data analyses, we estimated 4PM item parameters in 6,000 realistic data sets to establish minimum sample size requirements for accurate item and person parameter recovery. Using a factorial design that crossed discrete levels of item parameters, sample size, and test length, we also fit the 4PM to an additional 18,000 idealized data sets to extend our parameter recovery findings. Our combined results demonstrated that 4PM item parameters and parameter functions (e.g., item response functions) can be accurately estimated using BME in moderate to large samples (N ⩾ 5, 000) and person parameters can be accurately estimated in smaller samples (N ⩾ 1, 000). In the supplemental files, we report annotated [Formula: see text] code that shows how to estimate 4PM item and person parameters in [Formula: see text] (Chalmers, 2012 ).
在本研究中,我们在超过24000个真实、逼真和理想化的数据集中探索了四参数模型(4PM)的项目和人员参数恢复情况。在首次分析中,我们使用贝叶斯模态估计(BME)将4PM和三个替代模型应用于来自明尼苏达多相人格问卷青少年版三个因子量表的数据。我们的结果表明,4PM比更简单的项目反应理论(IRT)模型更适合这些量表。接下来,利用这些实际数据分析得到的参数估计值,我们在6000个逼真的数据集中估计4PM项目参数,以确定准确恢复项目和人员参数所需的最小样本量要求。我们还采用析因设计,将项目参数、样本量和测试长度的离散水平进行交叉,将4PM应用于另外18000个理想化数据集,以扩展我们的参数恢复研究结果。我们的综合结果表明,在中等至大样本(N⩾5000)中,使用BME可以准确估计4PM项目参数和参数函数(如项目反应函数),在较小样本(N⩾1000)中可以准确估计人员参数。在补充文件中,我们报告了带注释的[公式:见正文]代码,展示了如何在[公式:见正文]中估计4PM项目和人员参数(查尔默斯,2012年)。