Suppr超能文献

通过药物结构相似性以及整合药代动力学和药效学知识的相互作用网络来预测药物-药物相互作用。

Predicting drug-drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge.

作者信息

Takeda Takako, Hao Ming, Cheng Tiejun, Bryant Stephen H, Wang Yanli

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA.

出版信息

J Cheminform. 2017 Mar 7;9:16. doi: 10.1186/s13321-017-0200-8. eCollection 2017.

Abstract

Drug-drug interactions (DDIs) may lead to adverse effects and potentially result in drug withdrawal from the market. Predicting DDIs during drug development would help reduce development costs and time by rigorous evaluation of drug candidates. The primary mechanisms of DDIs are based on pharmacokinetics (PK) and pharmacodynamics (PD). This study examines the effects of 2D structural similarities of drugs on DDI prediction through interaction networks including both PD and PK knowledge. Our assumption was that a query drug (Dq) and a drug to be examined (De) likely have DDI if the drugs in the interaction network of De are structurally similar to Dq. A network of De describes the associations between the drugs and the proteins relating to PK and PD for De. These include target proteins, proteins interacting with target proteins, enzymes, and transporters for De. We constructed logistic regression models for DDI prediction using only 2D structural similarities between each Dq and the drugs in the network of De. The results indicated that our models could effectively predict DDIs. It was found that integrating structural similarity scores of the drugs relating to both PK and PD of De was crucial for model performance. In particular, the combination of the target- and enzyme-related scores provided the largest increase of the predictive power.Graphical abstract.

摘要

药物相互作用(DDIs)可能会导致不良反应,并有可能导致药物退出市场。在药物研发过程中预测药物相互作用,将有助于通过对候选药物进行严格评估来降低研发成本和缩短研发时间。药物相互作用的主要机制基于药代动力学(PK)和药效学(PD)。本研究通过包含药代动力学和药效学知识的相互作用网络,研究药物的二维结构相似性对药物相互作用预测的影响。我们的假设是,如果待研究药物(De)相互作用网络中的药物与查询药物(Dq)在结构上相似,那么Dq和De可能存在药物相互作用。De的网络描述了De与药代动力学和药效学相关的药物和蛋白质之间的关联。这些包括De的靶蛋白、与靶蛋白相互作用的蛋白质、酶和转运蛋白。我们仅使用每个Dq与De网络中药物之间的二维结构相似性构建了用于药物相互作用预测的逻辑回归模型。结果表明,我们的模型能够有效地预测药物相互作用。研究发现,整合与De的药代动力学和药效学相关的药物结构相似性得分对模型性能至关重要。特别是,与靶标和酶相关的得分组合提供了最大的预测能力提升。图形摘要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc58/5340788/4f166f2e6998/13321_2017_200_Figa_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验