Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne (EPFL) , 1015 Lausanne, Switzerland.
ACS Nano. 2017 May 23;11(5):4419-4427. doi: 10.1021/acsnano.6b08465. Epub 2017 Mar 27.
Plasmonic effects associated with metallic nanostructures have been widely studied for color generation. It became apparent that highly saturated and bright colors are hard to obtain, and very small nanostructures need to be fabricated. To address this issue, in this study, we employ metal-insulator-metal sandwich nanodisks that support enhanced in-phase electric dipole modes, which are blue-shifted with respect to a single metal disk. The blue shift enables the generation of short wavelength colors with larger nanostructures. The radiation modes hybridize with the Wood's anomaly in periodic structures, creating narrow and high-resonance peaks in the reflection and deep valleys in the transmission spectra, thus producing vivid complementary colors in both cases. Full colors can be achieved by tuning the radius of the nanodisks and the periodicity of the arrays. Good agreement between simulations and experiments is demonstrated and analyzed in CIE1931, sRGB, and HSV color spaces. The presented method has potential for applications in imaging, data storage, ultrafine displays, and plasmon-based biosensors.
金属纳米结构的等离子体效应已被广泛研究用于产生颜色。人们明显发现,很难获得高度饱和和明亮的颜色,并且需要制造非常小的纳米结构。为了解决这个问题,在本研究中,我们采用金属-绝缘体-金属三明治纳米盘,其支持增强的同相电偶极子模式,相对于单个金属盘发生蓝移。蓝移使具有较大纳米结构的短波长颜色的产生成为可能。辐射模式与周期性结构中的伍德反常现象混合,在反射谱中产生狭窄且高共振峰,并在透射谱中产生深谷,从而在两种情况下产生鲜明的互补色。通过调节纳米盘的半径和阵列的周期性,可以实现全彩色。在 CIE1931、sRGB 和 HSV 颜色空间中对模拟和实验之间的良好一致性进行了演示和分析。所提出的方法在成像、数据存储、超精细显示器和基于等离子体的生物传感器中有潜在的应用。