Suppr超能文献

半监督深度学习在肺音分析中的应用。

Application of semi-supervised deep learning to lung sound analysis.

作者信息

Chamberlain Daniel, Kodgule Rahul, Ganelin Daniela, Miglani Vivek, Fletcher Richard Ribon

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:804-807. doi: 10.1109/EMBC.2016.7590823.

Abstract

The analysis of lung sounds, collected through auscultation, is a fundamental component of pulmonary disease diagnostics for primary care and general patient monitoring for telemedicine. Despite advances in computation and algorithms, the goal of automated lung sound identification and classification has remained elusive. Over the past 40 years, published work in this field has demonstrated only limited success in identifying lung sounds, with most published studies using only a small numbers of patients (typically N<;20) and usually limited to a single type of lung sound. Larger research studies have also been impeded by the challenge of labeling large volumes of data, which is extremely labor-intensive. In this paper, we present the development of a semi-supervised deep learning algorithm for automatically classify lung sounds from a relatively large number of patients (N=284). Focusing on the two most common lung sounds, wheeze and crackle, we present results from 11,627 sound files recorded from 11 different auscultation locations on these 284 patients with pulmonary disease. 890 of these sound files were labeled to evaluate the model, which is significantly larger than previously published studies. Data was collected with a custom mobile phone application and a low-cost (US$30) electronic stethoscope. On this data set, our algorithm achieves ROC curves with AUCs of 0.86 for wheeze and 0.74 for crackle. Most importantly, this study demonstrates how semi-supervised deep learning can be used with larger data sets without requiring extensive labeling of data.

摘要

通过听诊收集的肺音分析是基层医疗中肺病诊断以及远程医疗中一般患者监测的基本组成部分。尽管计算和算法有所进步,但自动肺音识别和分类的目标仍然难以实现。在过去40年里,该领域已发表的研究在识别肺音方面仅取得了有限的成功,大多数已发表的研究只使用了少数患者(通常N<20),并且通常仅限于单一类型的肺音。更大规模的研究也受到大量数据标注难题的阻碍,这是一项极其耗费人力的工作。在本文中,我们展示了一种半监督深度学习算法的开发,用于对来自相对大量患者(N = 284)的肺音进行自动分类。聚焦于两种最常见的肺音——哮鸣音和湿啰音,我们展示了从这284例肺病患者的11个不同听诊部位记录的11627个声音文件的结果。其中890个声音文件被标注用于评估模型,这比之前发表的研究中的数据量要大得多。数据是通过定制的手机应用程序和低成本(30美元)的电子听诊器收集的。在这个数据集上,我们的算法对于哮鸣音的ROC曲线AUC为0.86,对于湿啰音为0.74。最重要的是,这项研究展示了半监督深度学习如何能够用于更大的数据集,而无需对数据进行大量标注。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验