Mueller Karsten, Jech Robert, Bonnet Cecilia, Tintěra Jaroslav, Hanuška Jaromir, Möller Harald E, Fassbender Klaus, Ludolph Albert, Kassubek Jan, Otto Markus, Růžička Evžen, Schroeter Matthias L
Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany.
Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague Prague, Czechia.
Front Neurosci. 2017 Mar 7;11:100. doi: 10.3389/fnins.2017.00100. eCollection 2017.
To identify progressive supranuclear palsy (PSP), we combined voxel-based morphometry (VBM) and support vector machine (SVM) classification using disease-specific features in multicentric magnetic resonance imaging (MRI) data. Structural brain differences were investigated at four centers between 20 patients with PSP and 20 age-matched healthy controls with T1-weighted MRI at 3T. To pave the way for future application in personalized medicine, we applied SVM classification to identify PSP on an individual level besides group analyses based on VBM. We found a major decline in gray matter density in the brainstem, insula, and striatum, and also in frontomedian regions, which is in line with current literature. Moreover, SVM classification yielded high accuracy rates above 80% for disease identification in imaging data. Focusing analyses on disease-specific regions-of-interest (ROI) led to higher accuracy rates compared to a whole-brain approach. Using a polynomial kernel (instead of a linear kernel) led to an increased sensitivity and a higher specificity of disease detection. Our study supports the application of MRI for individual diagnosis of PSP, if combined with SVM approaches. We demonstrate that SVM classification provides high accuracy rates in multicentric data-a prerequisite for potential application in diagnostic routine.
为了识别进行性核上性麻痹(PSP),我们在多中心磁共振成像(MRI)数据中结合基于体素的形态学测量(VBM)和使用疾病特异性特征的支持向量机(SVM)分类。在四个中心对20例PSP患者和20名年龄匹配的健康对照进行3T T1加权MRI检查,研究脑结构差异。为了为未来在个性化医疗中的应用铺平道路,除了基于VBM的组分析外,我们还应用SVM分类在个体水平上识别PSP。我们发现脑干、岛叶、纹状体以及额中区域的灰质密度大幅下降,这与当前文献一致。此外,SVM分类在成像数据中对疾病识别的准确率高达80%以上。与全脑方法相比,对疾病特异性感兴趣区域(ROI)进行聚焦分析可提高准确率。使用多项式核(而不是线性核)可提高疾病检测的敏感性和特异性。我们的研究支持将MRI与SVM方法相结合用于PSP的个体诊断。我们证明SVM分类在多中心数据中提供了高准确率——这是在诊断常规中潜在应用的先决条件。