School of Pharmacy, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming, 82071, USA.
Princeton University, Princeton, New Jersey, USA.
Pharm Res. 2017 Jun;34(6):1255-1263. doi: 10.1007/s11095-017-2142-2. Epub 2017 Mar 21.
Drugs used in the treatment of diseases can cause several unwanted systemic side effects. A site-specific drug delivery system can eliminate such consequences by delivering drugs to certain target areas of the body where therapeutic effects are required. Here we present the preparation and evaluation of magnetic nanoparticles of capsaicin, the active ingredient in chili peppers, coated with poly-L-lactide co-glycolide (PLGA), a FDA-approved biodegradable bioavailable polymer.
PCMN were prepared by solvent-evaporation/coprecipitation technique and their physicochemical and pharmacological characteristics evaluated in vitro. Further, effective pain/inflammation therapeutics of PCMN in a mouse model of inflammation was also studied. We also prepared and evaluated the subcellular localization of PLGA coated fluorescence magnetic nanoparticle (PFMN) in vitro in HEK293 cells.
Transmission electron microscopic images of PCMN showed that the size of the nanoparticles were of the order of 10-20 nm. PCMN showed approximately 9.29% drug loading and 89.15% encapsulation efficiencies. In vitro dissolution studies showed an increased solubility of capsaicin due to the nano-size of the PCMN, while PLGA coating allowed sustained release of capsaicin in vitro. The PCMN also reduced paw edema after injection in mice, and confocal microscopy revealed the successful intracellular localization of PLGA-coated fluorescein magnetic nanoparticles in HEK293 cells.
The PCMN provided a sustained release of capsaicin in vitro and inhibited carrageenan-induced inflammatory pain in mouse model in vivo. These data suggest that PLGA coating of capsaicin magnetic nanoparticles have the potential to be amenable for a sustained release of capsaicin to relieve pain.
用于治疗疾病的药物会引起多种不良的全身副作用。局部药物递送系统可通过将药物递送到需要治疗效果的身体的某些特定靶区来消除这些后果。在这里,我们介绍了用辣椒素(辣椒中的活性成分)制备和评估磁性纳米粒子,该磁性纳米粒子用聚乳酸-共-乙醇酸(PLGA)包被,这是一种 FDA 批准的可生物降解的生物相容性聚合物。
通过溶剂蒸发/共沉淀技术制备 PCMN,并在体外评估其物理化学和药理学特性。此外,还研究了 PCMN 在炎症小鼠模型中的有效疼痛/炎症治疗作用。我们还制备并评估了体外 HEK293 细胞中 PLGA 包被荧光磁性纳米颗粒(PFMN)的亚细胞定位。
PCMN 的透射电子显微镜图像显示,纳米颗粒的大小约为 10-20nm。PCMN 显示约 9.29%的药物载量和 89.15%的包封效率。体外溶解研究表明,由于 PCMN 的纳米尺寸,辣椒素的溶解度增加,而 PLGA 涂层允许辣椒素在体外持续释放。PCMN 还减少了小鼠注射后的爪肿胀,共聚焦显微镜显示 PLGA 包被的荧光磁性纳米颗粒在 HEK293 细胞中成功实现了细胞内定位。
PCMN 提供了体外辣椒素的持续释放,并抑制了体内角叉菜胶诱导的炎性疼痛模型。这些数据表明,辣椒素磁性纳米颗粒的 PLGA 涂层有可能实现辣椒素的持续释放以缓解疼痛。