Suppr超能文献

对途径组分的分子解析揭示了无毒乌头属植物异叶乌头中阿替生的生物合成。

Molecular dissection of pathway components unravel atisine biosynthesis in a non-toxic Aconitum species, A. heterophyllum Wall.

作者信息

Kumar Varun, Malhotra Nikhil, Pal Tarun, Chauhan Rajinder Singh

机构信息

Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, HP, 173234, India.

出版信息

3 Biotech. 2016 Jun;6(1):106. doi: 10.1007/s13205-016-0417-7. Epub 2016 Apr 18.

Abstract

Aconitum heterophyllum is an important component for various herbal drug formulations due to the occurrence of non-toxic aconites including marker compound, atisine. Despite huge pharmacological potential, the reprogramming of aconites production is limited due to lack of understanding on their biosynthesis. To address this problem, we have proposed here the complete atisine biosynthetic pathway for the first time connecting glycolysis, MVA/MEP, serine biosynthesis and diterpene biosynthetic pathways. The transcript profiling revealed phosphorylated pathway as a major contributor towards serine production in addition to repertoire of genes in glycolysis (G6PI, PFK, ALD and ENO), serine biosynthesis (PGDH and PSAT) and diterpene biosynthesis (KO and KH) sharing a similar pattern of expression (2-4-folds) in roots compared to shoots vis-à-vis atisine content (0-0.37 %). Quantification of steviol and comparative analysis of shortlisted genes between roots of high (0.37 %) vs low (0.14 %) atisine content accessions further confirmed the route of atisine biosynthesis. The results showed 6-fold increase in steviol content and 3-62-fold up-regulation of all the selected genes in roots of high content accession ascertaining their association towards atisine production. Moreover, significant positive correlations were observed between selected genes suggesting their co-expression and crucial role in atisine biosynthesis. This study, thus, offers unprecedented opportunities to explore the selected candidate genes for enhanced production of atisine in cultivated plant cells.

摘要

由于含有包括标志性化合物阿替生碱在内的无毒乌头碱,异叶乌头是各种草药配方中的重要成分。尽管具有巨大的药理潜力,但由于对其生物合成缺乏了解,乌头碱的生产重编程受到限制。为了解决这个问题,我们首次提出了完整的阿替生碱生物合成途径,该途径连接了糖酵解、MVA/MEP、丝氨酸生物合成和二萜生物合成途径。转录谱分析显示,除了糖酵解(G6PI、PFK、ALD和ENO)、丝氨酸生物合成(PGDH和PSAT)和二萜生物合成(KO和KH)中的基因库外,磷酸化途径是丝氨酸产生的主要贡献者,与地上部分相比,这些基因在根部的表达模式相似(2-4倍),而阿替生碱含量为(0-0.37%)。对高阿替生碱含量(0.37%)与低阿替生碱含量(0.14%)材料根部的甜菊醇进行定量分析和入围基因的比较分析,进一步证实了阿替生碱的生物合成途径。结果显示,高含量材料根部的甜菊醇含量增加了6倍,所有选定基因上调了3-62倍,确定了它们与阿替生碱生产的关联。此外,在选定基因之间观察到显著的正相关,表明它们在阿替生碱生物合成中共同表达且起关键作用。因此,本研究为探索选定的候选基因以提高栽培植物细胞中阿替生碱的产量提供了前所未有的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf36/4835424/70c6f6fc2dfa/13205_2016_417_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验