Suppr超能文献

Role of sodium pump in membrane potential gradient of canine proximal colon.

作者信息

Burke E P, Reed J B, Sanders K M

机构信息

Department of Physiology, University of Nevada School of Medicine, Reno 89557.

出版信息

Am J Physiol. 1988 Apr;254(4 Pt 1):C475-83. doi: 10.1152/ajpcell.1988.254.4.C475.

Abstract

A large gradient in membrane potential exists through the thickness of the circular layer in canine colonic muscles. This study tested the effects of several experimental manipulations known to block electrogenic sodium pumping on the resting potentials of colonic muscles. Membrane potentials were recorded with microelectrodes from cells through the circular muscle layer. In cells adjacent to the submucosal surface of the circular layer, application of ouabain (10(-6) to 10(-5) M) caused an average membrane depolarization of 36 mV. Removal of the external K+ resulted in depolarizations similar to the effect of ouabain. Readmission of K+ (5.9 mM) produced repolarization and an additional hyperpolarization that averaged 13 mV beyond the resting potential. When exposed to 15 mM K+, cells hyperpolarized well beyond the estimated potassium equilibrium potential (EK). Ouabain blocked the repolarization in response to reintroduction of external K+. Lowering the bath temperature to 20 degrees C rapidly depolarized membrane potential; rewarming repolarized cells. Ouabain and K+-free solutions blocked the repolarization response to rewarming. Cells also depolarized when exposed to solutions in which the NaCl was replaced with LiCl. Membrane potentials of cells within the bulk of the circular layer decreased as a function of distance from the submucosal border. Cells at the myenteric border of the circular muscle were not significantly affected by ouabain and K+-free solution, but these treatments abolished the gradient in membrane potential across the circular layer.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验