Ayuso-Fernández Iván, Martínez Angel T, Ruiz-Dueñas Francisco J
IPSBB unit, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
Biotechnol Biofuels. 2017 Mar 16;10:67. doi: 10.1186/s13068-017-0744-x. eCollection 2017.
Floudas et al. ( 336: 1715) established that lignin-degrading fungi appeared at the end of Carboniferous period associated with the production of the first ligninolytic peroxidases. Here, the subsequent evolution of these enzymes in Polyporales, where most wood-rotting fungi are included, is experimentally recreated using genomic information.
With this purpose, we analyzed the evolutionary pathway leading to the most efficient lignin-degrading peroxidases characterizing Polyporales species. After sequence reconstruction from 113 genes of ten sequenced genomes, the main enzyme intermediates were resurrected and characterized. Biochemical changes were analyzed together with predicted sequences and structures, to understand how these enzymes acquired the ability to degrade lignin and how this ability changed with time. The most probable first peroxidase in Polyporales would be a manganese peroxidase (Mn oxidizing phenolic lignin) that did not change substantially until the appearance of an exposed tryptophan (oxidizing nonphenolic lignin) originating an ancestral versatile peroxidase. Later, a quick evolution, with loss of the Mn-binding site, generated the first lignin peroxidase that evolved to the extant form by improving the catalytic efficiency. Increased stability at acidic pH, which strongly increases the oxidizing power of these enzymes, was observed paralleling the appearance of the exposed catalytic tryptophan.
We show how the change in peroxidase catalytic activities meant an evolutionary exploration for more efficient ways of lignin degradation by fungi, a key step for carbon recycling in land ecosystems. The study provides ancestral enzymes with a potential biotechnological interest for the sustainable production of fuels and chemicals in a biomass-based economy.
弗洛达斯等人(《科学》336: 1715)证实,木质素降解真菌出现在石炭纪末期,与首批木质素分解过氧化物酶的产生有关。在此,利用基因组信息通过实验再现了这些酶在多孔菌目(其中包括大多数木腐真菌)中的后续进化过程。
为此,我们分析了导致多孔菌目物种中最有效的木质素降解过氧化物酶的进化途径。从十个已测序基因组的113个基因进行序列重建后,复活并表征了主要的酶中间体。结合预测的序列和结构分析生化变化,以了解这些酶如何获得降解木质素的能力以及这种能力如何随时间变化。多孔菌目中最可能的首个过氧化物酶是一种锰过氧化物酶(氧化酚类木质素的锰),在一个暴露的色氨酸(氧化非酚类木质素)出现之前基本没有变化,从而产生了一种原始的多功能过氧化物酶。后来,随着锰结合位点的丧失,快速进化产生了首个木质素过氧化物酶,该酶通过提高催化效率进化为现存形式。观察到在酸性pH下稳定性增加,这极大地增强了这些酶的氧化能力,同时出现了暴露的催化色氨酸。
我们展示了过氧化物酶催化活性的变化如何意味着真菌对更高效的木质素降解方式进行进化探索,这是陆地生态系统中碳循环的关键一步。该研究为基于生物质的经济中燃料和化学品的可持续生产提供了具有潜在生物技术价值的原始酶。