Suppr超能文献

一种用于¹⁸F-FDG PET/CT定量分析宫颈异质性肿瘤的分割算法。

A Segmentation Algorithm for Quantitative Analysis of Heterogeneous Tumors of the Cervix With ¹⁸F-FDG PET/CT.

作者信息

Mu Wei, Chen Zhe, Shen Wei, Yang Feng, Liang Ying, Dai Ruwei, Wu Ning, Tian Jie

出版信息

IEEE Trans Biomed Eng. 2015 Oct;62(10):2465-79. doi: 10.1109/TBME.2015.2433397. Epub 2015 May 14.

Abstract

As positron-emission tomography (PET) images have low spatial resolution and much noise, accurate image segmentation is one of the most challenging issues in tumor quantification. Tumors of the uterine cervix present a particular challenge because of urine activity in the adjacent bladder. Here, we propose and validate an automatic segmentation method adapted to cervical tumors. Our proposed methodology combined the gradient field information of both the filtered PET image and the level set function into a level set framework by constructing a new evolution equation. Furthermore, we also constructed a new hyperimage to recognize a rough tumor region using the fuzzy c-means algorithm according to the tissue specificity as defined by both PET (uptake) and computed tomography (attenuation) to provide the initial zero level set, which could make the segmentation process fully automatic. The proposed method was verified based on simulation and clinical studies. For simulation studies, seven different phantoms, representing tumors with homogenous/heterogeneous-low/high uptake patterns and different volumes, were simulated with five different noise levels. Twenty-seven cervical cancer patients at different stages were enrolled for clinical evaluation of the method. Dice similarity coefficients (DSC) and Hausdorff distance (HD) were used to evaluate the accuracy of the segmentation method, while a Bland-Altman analysis of the mean standardized uptake value (SUVmean) and metabolic tumor volume (MTV) was used to evaluate the accuracy of the quantification. Using this method, the DSCs and HDs of the homogenous and heterogeneous phantoms under clinical noise level were 93.39 ±1.09% and 6.02 ±1.09 mm, 93.59 ±1.63% and 8.92 ±2.57 mm, respectively. The DSCs and HDs in patients measured 91.80 ±2.46% and 7.79 ±2.18 mm. Through Bland-Altman analysis, the SUVmean and the MTV using our method showed high correlation with the clinical gold standard. The results of both simulation and clinical studies demonstrated the accuracy, effectiveness, and robustness of the proposed method. Further assessment of the quantitative indices indicates the feasibility of this algorithm in accurate quantitative analysis of cervical tumors in clinical practice.

摘要

由于正电子发射断层扫描(PET)图像的空间分辨率低且噪声大,准确的图像分割是肿瘤定量分析中最具挑战性的问题之一。由于相邻膀胱中的尿液活性,子宫颈肿瘤带来了特殊的挑战。在此,我们提出并验证了一种适用于宫颈肿瘤的自动分割方法。我们提出的方法通过构建一个新的演化方程,将滤波后的PET图像和水平集函数的梯度场信息组合到一个水平集框架中。此外,我们还根据PET(摄取)和计算机断层扫描(衰减)定义的组织特异性,使用模糊c均值算法构建了一个新的超图像来识别粗略的肿瘤区域,以提供初始零水平集,这可以使分割过程完全自动化。所提出的方法基于模拟和临床研究进行了验证。对于模拟研究,模拟了七个不同的体模,代表具有均匀/非均匀低/高摄取模式和不同体积的肿瘤,以及五种不同的噪声水平。招募了27名不同阶段的宫颈癌患者对该方法进行临床评估。使用骰子相似系数(DSC)和豪斯多夫距离(HD)来评估分割方法的准确性,同时使用平均标准化摄取值(SUVmean)和代谢肿瘤体积(MTV)的布兰德-奥特曼分析来评估定量的准确性。使用该方法,临床噪声水平下均匀和非均匀体模的DSC和HD分别为93.39±1.09%和6.02±1.09毫米以及93.59±1.63%和8.92±2.57毫米。患者中的DSC和HD分别为91.80±2.46%和7.79±2.18毫米。通过布兰德-奥特曼分析,使用我们的方法得到的SUVmean和MTV与临床金标准显示出高度相关性。模拟和临床研究的结果都证明了所提出方法的准确性、有效性和鲁棒性。对定量指标的进一步评估表明该算法在临床实践中对宫颈肿瘤进行准确的定量分析是可行的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验