Yang Donglei, Tan Zhenyu, Mi Yongli, Wei Bryan
School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
Nucleic Acids Res. 2017 Apr 7;45(6):3606-3611. doi: 10.1093/nar/gkx121.
Earlier studies in DNA self-assembly have foretold the feasibility of building addressable nanostructures with multi-stranded motifs, which is fully validated in this study. In realizing this feasibility in DNA nanotechnology, a diversified set of motifs of modified domain lengths is extended from a classic type. The length of sticky ends can be adjusted to form different dihedral angles between the matching motifs, which corresponds to different connecting patterns. Moreover, the length of rigidity core can also be tuned to result in different dihedral angles between the component helices of a certain motif therefore different numbers of component helices. The extended set of motifs is used for self-assembly of complex one dimensional, two dimensional and three dimensional structures.
早期关于DNA自组装的研究已经预言了构建具有多链基序的可寻址纳米结构的可行性,本研究对此进行了充分验证。在DNA纳米技术中实现这一可行性时,从经典类型扩展出了一组具有不同修饰域长度的多样化基序。粘性末端的长度可以调整,以在匹配基序之间形成不同的二面角,这对应于不同的连接模式。此外,刚性核心的长度也可以调整,从而在特定基序的组成螺旋之间产生不同的二面角,进而产生不同数量的组成螺旋。这组扩展的基序用于自组装复杂的一维、二维和三维结构。