BioRealm, Culver City, CA, USA; Bina Nusantara University, Jakarta, Indonesia.
Bina Nusantara University, Jakarta, Indonesia; Clemson University, Clemson, SC, USA.
Trends Mol Med. 2018 Feb;24(2):221-235. doi: 10.1016/j.molmed.2017.12.008. Epub 2018 Feb 4.
There are limited biomarkers for substance use disorders (SUDs). Traditional statistical approaches are identifying simple biomarkers in large samples, but clinical use cases are still being established. High-throughput clinical, imaging, and 'omic' technologies are generating data from SUD studies and may lead to more sophisticated and clinically useful models. However, analytic strategies suited for high-dimensional data are not regularly used. We review strategies for identifying biomarkers and biosignatures from high-dimensional data types. Focusing on penalized regression and Bayesian approaches, we address how to leverage evidence from existing studies and knowledge bases, using nicotine metabolism as an example. We posit that big data and machine learning approaches will considerably advance SUD biomarker discovery. However, translation to clinical practice, will require integrated scientific efforts.
用于物质使用障碍(SUD)的生物标志物有限。传统的统计方法是在大样本中识别简单的生物标志物,但临床应用案例仍在建立中。高通量临床、成像和“组学”技术正在从 SUD 研究中生成数据,这可能会导致更复杂和更具临床实用性的模型。然而,适合高维数据的分析策略并未得到常规使用。我们回顾了从高维数据类型中识别生物标志物和生物特征的策略。我们以尼古丁代谢为例,重点讨论了如何利用现有研究和知识库中的证据,利用惩罚回归和贝叶斯方法。我们假设,大数据和机器学习方法将极大地促进 SUD 生物标志物的发现。然而,要将其转化为临床实践,还需要综合科学努力。