Suppr超能文献

用于临床决策支持中药物相互作用检测的三个商业知识库的比较

Comparison of three commercial knowledge bases for detection of drug-drug interactions in clinical decision support.

作者信息

Fung Kin Wah, Kapusnik-Uner Joan, Cunningham Jean, Higby-Baker Stefanie, Bodenreider Olivier

机构信息

National Library of Medicine, Bethesda, MD, USA.

First Databank, South San Francisco, CA, USA.

出版信息

J Am Med Inform Assoc. 2017 Jul 1;24(4):806-812. doi: 10.1093/jamia/ocx010.

Abstract

OBJECTIVE

To compare 3 commercial knowledge bases (KBs) used for detection and avoidance of potential drug-drug interactions (DDIs) in clinical practice.

METHODS

Drugs in the DDI tables from First DataBank (FDB), Micromedex, and Multum were mapped to RxNorm. The KBs were compared at the clinical drug, ingredient, and DDI rule levels. The KBs were evaluated against a reference list of highly significant DDIs from the Office of the National Coordinator for Health Information Technology (ONC). The KBs and the ONC list were applied to a prescription data set to simulate their use in clinical decision support.

RESULTS

The KBs contained 1.6 million (FDB), 4.5 million (Micromedex), and 4.8 million (Multum) clinical drug pairs. Altogether, there were 8.6 million unique pairs, of which 79% were found only in 1 KB and 5% in all 3 KBs. However, there was generally more agreement than disagreement in the severity rankings, especially in the contraindicated category. The KBs covered 99.8-99.9% of the alerts of the ONC list and would have generated 25 (FDB), 145 (Micromedex), and 84 (Multum) alerts per 1000 prescriptions.

CONCLUSION

The commercial KBs differ considerably in size and quantity of alerts generated. There is less variability in severity ranking of DDIs than suggested by previous studies. All KBs provide very good coverage of the ONC list. More work is needed to standardize the editorial policies and evidence for inclusion of DDIs to reduce variation among knowledge sources and improve relevance. Some DDIs considered contraindicated in all 3 KBs might be possible candidates to add to the ONC list.

摘要

目的

比较临床实践中用于检测和避免潜在药物相互作用(DDI)的3个商业知识库(KB)。

方法

将来自First DataBank(FDB)、Micromedex和Multum的DDI表中的药物映射到RxNorm。在临床药物、成分和DDI规则层面比较这些知识库。根据美国卫生信息技术国家协调办公室(ONC)的高度显著DDI参考列表对这些知识库进行评估。将这些知识库和ONC列表应用于一个处方数据集,以模拟它们在临床决策支持中的使用。

结果

这些知识库分别包含160万(FDB)、450万(Micromedex)和480万(Multum)个临床药物对。总共存在860万个独特的药物对,其中79%仅在1个知识库中出现,5%在所有3个知识库中都有。然而,在严重程度排名方面,总体上一致的情况多于不一致的情况,尤其是在禁忌类别中。这些知识库涵盖了ONC列表中99.8% - 99.9%的警示信息,每1000张处方会产生25条(FDB)、145条(Micromedex)和84条(Multum)警示。

结论

商业知识库在生成的警示信息的规模和数量上有很大差异。DDI严重程度排名的变异性比之前的研究所表明的要小。所有知识库对ONC列表的覆盖都非常好。需要开展更多工作来规范DDI纳入的编辑政策和证据,以减少知识来源之间的差异并提高相关性。在所有3个知识库中都被视为禁忌的一些DDI可能是可添加到ONC列表中的候选对象。

相似文献

7
High-priority drug-drug interactions for use in electronic health records.高优先级药物相互作用,用于电子健康记录。
J Am Med Inform Assoc. 2012 Sep-Oct;19(5):735-43. doi: 10.1136/amiajnl-2011-000612. Epub 2012 Apr 26.

引用本文的文献

本文引用的文献

3
Evaluating drug-drug interaction information in NDF-RT and DrugBank.评估NDF-RT和药物银行中的药物相互作用信息。
J Biomed Semantics. 2015 May 11;6:19. doi: 10.1186/s13326-015-0018-0. eCollection 2015.
8
Drug-drug interaction software in clinical practice: a systematic review.临床实践中的药物相互作用软件:一项系统评价
Eur J Clin Pharmacol. 2015 Feb;71(2):131-42. doi: 10.1007/s00228-014-1786-7. Epub 2014 Dec 23.
10
High-priority drug-drug interactions for use in electronic health records.高优先级药物相互作用,用于电子健康记录。
J Am Med Inform Assoc. 2012 Sep-Oct;19(5):735-43. doi: 10.1136/amiajnl-2011-000612. Epub 2012 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验