Valenzuela Edgardo I, Padilla-Loma Claudia, Gómez-Hernández Nicolás, López-Lozano Nguyen E, Casas-Flores Sergio, Cervantes Francisco J
División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico.
División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico.
Front Microbiol. 2020 Apr 15;11:587. doi: 10.3389/fmicb.2020.00587. eCollection 2020.
Humic substances are redox-active organic molecules, which play pivotal roles in several biogeochemical cycles due to their electron-transferring capacity involving multiple abiotic and microbial transformations. Based on the redox properties of humic substances, and the metabolic capabilities of microorganisms to reduce and oxidize them, we hypothesized that they could mediate the anaerobic oxidation of methane (AOM) coupled to the reduction of nitrous oxide (NO) in wetland sediments. This study provides several lines of evidence indicating the coupling between AOM and the reduction of NO through an extracellular electron transfer mechanism mediated by the redox active functional groups in humic substances (e.g., quinones). We found that the microbiota of a sediment collected from the Sisal wetland (Yucatán Peninsula, southeastern Mexico) was able to reduce NO (4.6 ± 0.5 μmol NO g day) when reduced humic substances were provided as electron donor in a close stoichiometric relationship. Furthermore, a microbial enrichment derived from the wetland sediment achieved simultaneous CH oxidation (1.3 ± 0.1 μmol CO g day) and NO reduction (25.2 ± 0.5 μmol NO g day), which was significantly dependent on the presence of humic substances as an extracellular electron shuttle. Taxonomic characterization based on 16S rRNA gene sequencing revealed (a ɣ-proteobacterium), the Rice Cluster I from the and an uncultured archaeon from the family as the microbes potentially involved in AOM linked to NO reduction mediated by humic substances. The findings reported here suggest that humic substances might play an important role to prevent the emission of greenhouse gases (CH and NO) from wetland sediments. Further efforts to evaluate the feasibility of this novel mechanism under the natural conditions prevailing in ecosystems must be considered in future studies.
腐殖质是具有氧化还原活性的有机分子,由于其电子转移能力涉及多种非生物和微生物转化,在多个生物地球化学循环中发挥着关键作用。基于腐殖质的氧化还原特性以及微生物还原和氧化它们的代谢能力,我们推测它们可能介导湿地沉积物中甲烷厌氧氧化(AOM)与一氧化二氮(N₂O)还原的耦合。本研究提供了多条证据,表明通过腐殖质(如醌类)中氧化还原活性官能团介导的细胞外电子转移机制,AOM与N₂O还原之间存在耦合关系。我们发现,当以接近化学计量关系提供还原态腐殖质作为电子供体时,从锡萨尔湿地(墨西哥东南部尤卡坦半岛)采集的沉积物中的微生物群能够还原N₂O(4.6±0.5 μmol N₂O g⁻¹ d⁻¹)。此外,源自湿地沉积物的微生物富集培养物实现了同时的CH₄氧化(1.3±0.1 μmol CO₂ g⁻¹ d⁻¹)和N₂O还原(25.2±0.5 μmol N₂O g⁻¹ d⁻¹),这显著依赖于腐殖质作为细胞外电子穿梭体的存在。基于16S rRNA基因测序的分类学表征揭示了(一种γ-变形菌)、来自水稻菌群I的细菌以及来自科的未培养古菌,它们可能是参与由腐殖质介导的与N₂O还原相关的AOM的微生物。此处报道的研究结果表明,腐殖质可能在防止湿地沉积物排放温室气体(CH₄和N₂O)方面发挥重要作用。未来的研究必须考虑进一步努力评估这种新机制在生态系统自然条件下的可行性。