Suppr超能文献

迈向纳米-生物相互作用的系统探索。

Toward a systematic exploration of nano-bio interactions.

作者信息

Bai Xue, Liu Fang, Liu Yin, Li Cong, Wang Shenqing, Zhou Hongyu, Wang Wenyi, Zhu Hao, Winkler David A, Yan Bing

机构信息

School of Chemistry and Chemical Engineering, Shandong University, Jinan, China.

School of Environmental Science and Technology, Shandong University, Jinan, China.

出版信息

Toxicol Appl Pharmacol. 2017 May 15;323:66-73. doi: 10.1016/j.taap.2017.03.011. Epub 2017 Mar 24.

Abstract

Many studies of nanomaterials make non-systematic alterations of nanoparticle physicochemical properties. Given the immense size of the property space for nanomaterials, such approaches are not very useful in elucidating fundamental relationships between inherent physicochemical properties of these materials and their interactions with, and effects on, biological systems. Data driven artificial intelligence methods such as machine learning algorithms have proven highly effective in generating models with good predictivity and some degree of interpretability. They can provide a viable method of reducing or eliminating animal testing. However, careful experimental design with the modelling of the results in mind is a proven and efficient way of exploring large materials spaces. This approach, coupled with high speed automated experimental synthesis and characterization technologies now appearing, is the fastest route to developing models that regulatory bodies may find useful. We advocate greatly increased focus on systematic modification of physicochemical properties of nanoparticles combined with comprehensive biological evaluation and computational analysis. This is essential to obtain better mechanistic understanding of nano-bio interactions, and to derive quantitatively predictive and robust models for the properties of nanomaterials that have useful domains of applicability.

摘要

许多关于纳米材料的研究对纳米颗粒的物理化学性质进行非系统性改变。鉴于纳米材料性质空间的巨大规模,此类方法在阐明这些材料的固有物理化学性质与其与生物系统的相互作用及对生物系统的影响之间的基本关系方面并非十分有用。数据驱动的人工智能方法,如机器学习算法,已被证明在生成具有良好预测性和一定程度可解释性的模型方面非常有效。它们可以提供一种减少或消除动物试验的可行方法。然而,考虑到结果建模的精心实验设计是探索大型材料空间的一种经过验证且高效的方法。这种方法,再加上现在出现的高速自动化实验合成和表征技术,是开发监管机构可能会觉得有用的模型的最快途径。我们大力提倡更加注重对纳米颗粒物理化学性质的系统性修饰,同时结合全面的生物学评估和计算分析。这对于更好地从机理上理解纳米 - 生物相互作用,以及为具有有用适用范围的纳米材料性质推导定量预测性和稳健的模型至关重要。

相似文献

1
Toward a systematic exploration of nano-bio interactions.迈向纳米-生物相互作用的系统探索。
Toxicol Appl Pharmacol. 2017 May 15;323:66-73. doi: 10.1016/j.taap.2017.03.011. Epub 2017 Mar 24.
3
4
In silico analysis of nanomaterials hazard and risk.纳米材料危害与风险的计算分析。
Acc Chem Res. 2013 Mar 19;46(3):802-12. doi: 10.1021/ar300049e. Epub 2012 Nov 8.
6
Bioinformatics and machine learning to support nanomaterial grouping.支持纳米材料分组的生物信息学与机器学习
Nanotoxicology. 2024 Jun;18(4):373-400. doi: 10.1080/17435390.2024.2368005. Epub 2024 Jul 1.

引用本文的文献

7
Principles of Nanoparticle Delivery to Solid Tumors.纳米颗粒递送至实体瘤的原理
BME Front. 2023 Mar 31;4:0016. doi: 10.34133/bmef.0016. eCollection 2023.
10
The Right Stuff: On the Future of Nanotoxicology.正确的特质:论纳米毒理学的未来
Front Toxicol. 2019 Nov 26;1:1. doi: 10.3389/ftox.2019.00001. eCollection 2019.

本文引用的文献

2
Have Nanoscience and Nanotechnology Delivered?纳米科学与纳米技术实现目标了吗?
ACS Nano. 2016 Aug 23;10(8):7225-6. doi: 10.1021/acsnano.6b05344.
4
Mechanisms and consequences of bacterial resistance to antimicrobial peptides.抗菌肽耐药性的机制和后果。
Drug Resist Updat. 2016 May;26:43-57. doi: 10.1016/j.drup.2016.04.002. Epub 2016 Apr 20.
5
Discovery and Optimization of Materials Using Evolutionary Approaches.利用进化方法发现和优化材料。
Chem Rev. 2016 May 25;116(10):6107-32. doi: 10.1021/acs.chemrev.5b00691. Epub 2016 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验