Ladhani Laila, Pardon Gaspard, Meeuws Hanne, van Wesenbeeck Liesbeth, Schmidt Kristiane, Stuyver Lieven, van der Wijngaart Wouter
KTH Royal Institute of Technology, Department of Micro and Nanosystems, Stockholm, Sweden.
Janssen Diagnostics, Beerse, Belgium.
PLoS One. 2017 Mar 28;12(3):e0174314. doi: 10.1371/journal.pone.0174314. eCollection 2017.
Airborne transmission of the influenza virus contributes significantly to the spread of this infectious pathogen, particularly over large distances when carried by aerosol droplets with long survival times. Efficient sampling of virus-loaded aerosol in combination with a low limit of detection of the collected virus could enable rapid and early detection of airborne influenza virus at the point-of-care setting. Here, we demonstrate a successful sampling and detection of airborne influenza virus using a system specifically developed for such applications. Our system consists of a custom-made electrostatic precipitation (ESP)-based bioaerosol sampler that is coupled with downstream quantitative polymerase chain reaction (qPCR) analysis. Aerosolized viruses are sampled directly into a miniaturized collector with liquid volume of 150 μL, which constitutes a simple and direct interface with subsequent biological assays. This approach reduces sample dilution by at least one order of magnitude when compared to other liquid-based aerosol bio-samplers. Performance of our ESP-based sampler was evaluated using influenza virus-loaded sub-micron aerosols generated from both cultured and clinical samples. Despite the miniaturized collection volume, we demonstrate a collection efficiency of at least 10% and sensitive detection of a minimum of 3721 RNA copies. Furthermore, we show that an improved extraction protocol can allow viral recovery of down to 303 RNA copies and a maximum sampler collection efficiency of 47%. A device with such a performance would reduce sampling times dramatically, from a few hours with current sampling methods down to a couple of minutes with our ESP-based bioaerosol sampler.
流感病毒的空气传播对这种传染性病原体的传播有显著贡献,特别是当它由具有较长存活时间的气溶胶飞沫携带时,能在大范围内传播。对携带病毒的气溶胶进行高效采样,并结合对所收集病毒的低检测限,能够在即时护理环境中快速早期检测空气传播的流感病毒。在此,我们展示了使用专门为此类应用开发的系统成功采样和检测空气传播的流感病毒。我们的系统由一个定制的基于静电沉淀(ESP)的生物气溶胶采样器组成,该采样器与下游的定量聚合酶链反应(qPCR)分析相结合。雾化的病毒被直接采样到一个液体体积为150μL的小型收集器中,这构成了与后续生物检测的简单直接接口。与其他基于液体的气溶胶生物采样器相比,这种方法将样品稀释至少降低了一个数量级。我们基于ESP的采样器的性能使用从培养样品和临床样品产生的携带流感病毒的亚微米气溶胶进行了评估。尽管收集体积小型化,但我们展示了至少10%的收集效率和对至少3721个RNA拷贝的灵敏检测。此外,我们表明改进的提取方案可以使病毒回收率低至303个RNA拷贝,采样器的最大收集效率为47%。具有这种性能的设备将大大减少采样时间,从当前采样方法的几个小时减少到我们基于ESP的生物气溶胶采样器的几分钟。