Ciller Carlos, De Zanet Sandro, Kamnitsas Konstantinos, Maeder Philippe, Glocker Ben, Munier Francis L, Rueckert Daniel, Thiran Jean-Philippe, Bach Cuadra Meritxell, Sznitman Raphael
Radiology Department, CIBM, Lausanne University and University Hospital, Lausanne, Switzerland.
Ophthalmic Technology Group, ARTORG Center Univ. of Bern, Bern, Switzerland.
PLoS One. 2017 Mar 28;12(3):e0173900. doi: 10.1371/journal.pone.0173900. eCollection 2017.
Retinoblastoma and uveal melanoma are fast spreading eye tumors usually diagnosed by using 2D Fundus Image Photography (Fundus) and 2D Ultrasound (US). Diagnosis and treatment planning of such diseases often require additional complementary imaging to confirm the tumor extend via 3D Magnetic Resonance Imaging (MRI). In this context, having automatic segmentations to estimate the size and the distribution of the pathological tissue would be advantageous towards tumor characterization. Until now, the alternative has been the manual delineation of eye structures, a rather time consuming and error-prone task, to be conducted in multiple MRI sequences simultaneously. This situation, and the lack of tools for accurate eye MRI analysis, reduces the interest in MRI beyond the qualitative evaluation of the optic nerve invasion and the confirmation of recurrent malignancies below calcified tumors. In this manuscript, we propose a new framework for the automatic segmentation of eye structures and ocular tumors in multi-sequence MRI. Our key contribution is the introduction of a pathological eye model from which Eye Patient-Specific Features (EPSF) can be computed. These features combine intensity and shape information of pathological tissue while embedded in healthy structures of the eye. We assess our work on a dataset of pathological patient eyes by computing the Dice Similarity Coefficient (DSC) of the sclera, the cornea, the vitreous humor, the lens and the tumor. In addition, we quantitatively show the superior performance of our pathological eye model as compared to the segmentation obtained by using a healthy model (over 4% DSC) and demonstrate the relevance of our EPSF, which improve the final segmentation regardless of the classifier employed.
视网膜母细胞瘤和葡萄膜黑色素瘤是快速扩散的眼部肿瘤,通常通过二维眼底图像摄影(眼底)和二维超声(超声)进行诊断。此类疾病的诊断和治疗计划通常需要额外的补充成像,以通过三维磁共振成像(MRI)确认肿瘤的范围。在这种情况下,进行自动分割以估计病理组织的大小和分布,将有助于肿瘤特征的描述。到目前为止,替代方法是手动勾勒眼部结构,这是一项相当耗时且容易出错的任务,需要在多个MRI序列中同时进行。这种情况以及缺乏准确的眼部MRI分析工具,降低了人们对MRI的兴趣,除了对视神经侵犯的定性评估和钙化肿瘤下方复发性恶性肿瘤的确认之外。在本论文中,我们提出了一种用于在多序列MRI中自动分割眼部结构和眼部肿瘤的新框架。我们的关键贡献是引入了一种病理眼部模型,从中可以计算出眼部患者特定特征(EPSF)。这些特征结合了病理组织的强度和形状信息,同时嵌入到眼睛的健康结构中。我们通过计算巩膜、角膜、玻璃体液、晶状体和肿瘤的骰子相似系数(DSC),在一个病理患者眼部数据集上评估了我们的工作。此外,我们定量地展示了我们的病理眼部模型与使用健康模型获得的分割相比具有更高的性能(DSC超过4%),并证明了我们的EPSF的相关性,无论使用何种分类器,它都能改善最终的分割结果。