Karnkowska Anna, Hampl Vladimír
Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
Department of Parasitology, Charles University, Prague, Czech Republic.
Microb Cell. 2016 Sep 30;3(10):491-494. doi: 10.15698/mic2016.10.531.
Due to their involvement in the energy metabolism, mitochondria are essential for most eukaryotic cells. Microbial eukaryotes living in low oxygen environments possess reduced forms of mitochondria, namely mitochondrion-related organelles (MROs). These do not produce ATP by oxidative phosphorylation on their membranes and some do not produce ATP at all. Still, they are indispensable because of other essential functions such as iron-sulphur (Fe-S) cluster assembly. Recently, the first microbial eukaryote with neither mitochondrion nor MRO was characterized - sp. Genome and transcriptome sequencing of revealed that it lacks all hallmark mitochondrial proteins. Crucially, the essential mitochondrial pathway for the Fe-S cluster assembly (ISC) was replaced by a bacterial sulphur mobilization (SUF) system. The discovery of such amitochondriate eukaryote broadens our knowledge about the diversity and plasticity of eukaryotic cells and provides a substantial contribution to our understanding of eukaryotic cell evolution.
由于线粒体参与能量代谢,所以对大多数真核细胞来说至关重要。生活在低氧环境中的微生物真核生物拥有简化形式的线粒体,即线粒体相关细胞器(MROs)。这些细胞器不在其膜上通过氧化磷酸化产生ATP,有些根本不产生ATP。然而,由于其他重要功能,如铁硫(Fe-S)簇组装,它们仍然不可或缺。最近,首个既没有线粒体也没有MRO的微生物真核生物被鉴定出来—— 种。对 的基因组和转录组测序表明,它缺乏所有标志性的线粒体蛋白。至关重要的是,Fe-S簇组装(ISC)的基本线粒体途径被细菌硫动员(SUF)系统所取代。这种无线粒体真核生物的发现拓宽了我们对真核细胞多样性和可塑性的认识,并为我们理解真核细胞进化做出了重大贡献。