Temesi John, Mattioni Maturana Felipe, Peyrard Arthur, Piucco Tatiane, Murias Juan M, Millet Guillaume Y
Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
Eur J Appl Physiol. 2017 May;117(5):969-978. doi: 10.1007/s00421-017-3585-1. Epub 2017 Mar 29.
In theory, a slow oxygen uptake ([Formula: see text]) kinetics leads to a greater accumulation of anaerobic by-products, which can, in turn, induce more neuromuscular fatigue. However, the existence of this relationship has never been tested.
After two sessions to measure peak [Formula: see text], peak power output (PO), and [Formula: see text] kinetics responses in the unfatigued state (τ [Formula: see text] MOD), 10 healthy young adults performed a 6-min cycling bout at 80% PO (INT). [Formula: see text] kinetics responses were also measured during INT. Neuromuscular fatigue was measured isometrically pre- and post-INT (immediately post- and 15-s post-INT) with an innovative cycle ergometer.
Maximal voluntary contraction (MVC) force, high-frequency doublet amplitude, and the ratio of low- to high-frequency doublet amplitudes decreased by 34 ± 7, 43 ± 11, and 31 ± 13%, respectively (all P < 0.01). A significant Spearman's rank correlation was observed between the change in low-frequency doublet force (ΔDb10) immediately after INT and both τ [Formula: see text] MOD and τ [Formula: see text] INT (ρ = -0.68 and ρ = -0.67, both P < 0.05). When considering the largest responses from the two neuromuscular evaluations post-INT, significant correlations were also found between τ [Formula: see text] MOD and ΔDb10 (ρ = -0.74; P < 0.05) and between τ[Formula: see text] INT and both ΔDb10 and low-frequency fatigue (ρ = -0.70 and ρ = -0.66; both P < 0.05).
The present results suggest that subjects with slow [Formula: see text] kinetics experience more peripheral fatigue, in particular more excitation-contraction coupling failure, likely due to a greater accumulation of protons and/or inorganic phosphates.
理论上,缓慢的摄氧([公式:见原文])动力学导致更多无氧代谢副产物的积累,这反过来又会诱发更多的神经肌肉疲劳。然而,这种关系的存在从未得到验证。
在进行了两次测量未疲劳状态下的峰值[公式:见原文]、峰值功率输出(PO)和[公式:见原文]动力学反应(τ[公式:见原文]MOD)的实验后,10名健康的年轻成年人以80%的PO进行了6分钟的骑行运动(INT)。在INT期间也测量了[公式:见原文]动力学反应。使用创新的自行车测力计在INT前后(INT后立即和INT后15秒)等长测量神经肌肉疲劳。
最大自主收缩(MVC)力、高频双波幅以及低频与高频双波幅的比值分别下降了34±7%、43±11%和31±13%(均P<0.01)。在INT后立即出现的低频双波力变化(ΔDb10)与τ[公式:见原文]MOD和τ[公式:见原文]INT之间均观察到显著的Spearman等级相关性(ρ = -0.68和ρ = -0.67,均P<0.05)。当考虑INT后两次神经肌肉评估中的最大反应时,在τ[公式:见原文]MOD与ΔDb10之间(ρ = -0.74;P<
0.05)以及τ[公式:见原文]INT与ΔDb10和低频疲劳之间(ρ = -0.70和ρ = -0.66;均P<0.05)也发现了显著相关性。
目前的结果表明,摄氧动力学缓慢的受试者会经历更多的外周疲劳,特别是更多的兴奋 - 收缩偶联失败,这可能是由于质子和/或无机磷酸盐的积累更多所致。