文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单晶超结构稳定单畴磁铁矿纳米颗粒。

Single crystalline superstructured stable single domain magnetite nanoparticles.

机构信息

Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.

Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany.

出版信息

Sci Rep. 2017 Mar 30;7:45484. doi: 10.1038/srep45484.


DOI:10.1038/srep45484
PMID:28358051
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5371993/
Abstract

Magnetite nanoparticles exhibit magnetic properties that are size and organization dependent and, for applications that rely on their magnetic state, they usually have to be monodisperse. Forming such particles, however, has remained a challenge. Here, we synthesize 40 nm particles of magnetite in the presence of polyarginine and show that they are composed of 10 nm building blocks, yet diffract like single crystals. We use both bulk magnetic measurements and magnetic induction maps recorded from individual particles using off-axis electron holography to show that each 40 nm particle typically contains a single magnetic domain. The magnetic state is therefore determined primarily by the size of the superstructure and not by the sizes of the constituent sub-units. Our results fundamentally demonstrate the structure - property relationship in a magnetic mesoparticle.

摘要

磁铁矿纳米颗粒表现出的磁性能与其尺寸和组织有关,对于依赖其磁状态的应用,它们通常必须是单分散的。然而,形成这样的颗粒仍然是一个挑战。在这里,我们在多聚精氨酸的存在下合成了 40nm 的磁铁矿颗粒,并表明它们由 10nm 的构建块组成,但像单晶一样衍射。我们使用体磁测量和使用离轴电子全息术从单个颗粒记录的磁感应图来表明,每个 40nm 的颗粒通常包含一个单一的磁畴。因此,磁状态主要由超结构的尺寸决定,而不是由组成的亚单位的尺寸决定。我们的结果从根本上证明了磁性介孔颗粒中的结构-性能关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82e/5371993/7c8e25fbf2b4/srep45484-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82e/5371993/6f93149da805/srep45484-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82e/5371993/d449834aeecc/srep45484-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82e/5371993/c98544fa1e6e/srep45484-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82e/5371993/7c8e25fbf2b4/srep45484-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82e/5371993/6f93149da805/srep45484-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82e/5371993/d449834aeecc/srep45484-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82e/5371993/c98544fa1e6e/srep45484-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82e/5371993/7c8e25fbf2b4/srep45484-f4.jpg

相似文献

[1]
Single crystalline superstructured stable single domain magnetite nanoparticles.

Sci Rep. 2017-3-30

[2]
Crystallite sizes and lattice parameters of nano-biomagnetite particles.

J Nanosci Nanotechnol. 2010-12

[3]
Magnetic nanoparticles for in vivo use: a critical assessment of their composition.

J Phys Chem B. 2014-10-9

[4]
Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens.

Nanotechnology. 2011-10-21

[5]
Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity.

Nanotechnology. 2012-1-11

[6]
Fe3O4 nanoparticles: protein-mediated crystalline magnetic superstructures.

Nanotechnology. 2012-9-25

[7]
Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents.

Langmuir. 2013-1-4

[8]
Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles.

Nanotechnology. 2012-3-21

[9]
Effect of Magnetite Nanoparticles on Human Blood Components.

Bull Exp Biol Med. 2024-4

[10]
Direct visualization of the thermomagnetic behavior of pseudo-single-domain magnetite particles.

Sci Adv. 2016-4-15

引用本文的文献

[1]
Recent advancements and clinical aspects of engineered iron oxide nanoplatforms for magnetic hyperthermia-induced cancer therapy.

Mater Today Bio. 2024-11-28

[2]
Magnetic Fluids: The Interaction between the Microstructure, Macroscopic Properties, and Dynamics under Different Combinations of External Influences.

Nanomaterials (Basel). 2024-1-19

[3]
Cubic Mesocrystal Magnetic Iron Oxide Nanoparticle Formation by Oriented Aggregation of Cubes in Organic Media: A Rational Design to Enhance the Magnetic Hyperthermia Efficiency.

ACS Appl Mater Interfaces. 2023-7-12

[4]
Comparative Study of Temperature Impact in Spin-Torque Switched Perpendicular and Easy-Cone MTJs.

Nanomaterials (Basel). 2023-1-13

[5]
Effect of Surface Functionalization on the Magnetization of FeO Nanoparticles by Hybrid Density Functional Theory Calculations.

J Phys Chem Lett. 2022-10-13

[6]
Imaging the Magnetization of Single Magnetite Nanoparticle Clusters via Photothermal Circular Dichroism.

Nano Lett. 2022-5-11

[7]
Hyperthermia Effect of Nanoclusters Governed by Interparticle Crystalline Structures.

ACS Omega. 2021-11-10

[8]
Wettability of Magnetite Nanoparticles Guides Growth from Stabilized Amorphous Ferrihydrite.

J Am Chem Soc. 2021-7-28

[9]
Mapping the Magnetic Coupling of Self-Assembled FeO Nanocubes by Electron Holography.

Materials (Basel). 2021-2-6

[10]
Magnetite-Arginine Nanoparticles as a Multifunctional Biomedical Tool.

Nanomaterials (Basel). 2020-10-13

本文引用的文献

[1]
From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials.

Angew Chem Int Ed Engl. 2015-4-13

[2]
A customizable software for fast reduction and analysis of large X-ray scattering data sets: applications of the new package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering.

J Appl Crystallogr. 2014-9-30

[3]
Enhanced magnetism in highly ordered magnetite nanoparticle-filled nanohole arrays.

Small. 2014-4-6

[4]
Biomimetic magnetite formation: from biocombinatorial approaches to mineralization effects.

Langmuir. 2014-2-14

[5]
Imaging macrophages with nanoparticles.

Nat Mater. 2014-2

[6]
Structural insight into magnetochrome-mediated magnetite biomineralization.

Nature. 2013-10-6

[7]
Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles.

PLoS One. 2013-3-8

[8]
Nucleation and growth of magnetite from solution.

Nat Mater. 2013-2-3

[9]
Magnetic interactions between nanoparticles.

Beilstein J Nanotechnol. 2010-12-28

[10]
Refinement procedure for the image alignment in high-resolution electron tomography.

Ultramicroscopy. 2011-6-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索