Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany.
Sci Rep. 2017 Mar 30;7:45484. doi: 10.1038/srep45484.
Magnetite nanoparticles exhibit magnetic properties that are size and organization dependent and, for applications that rely on their magnetic state, they usually have to be monodisperse. Forming such particles, however, has remained a challenge. Here, we synthesize 40 nm particles of magnetite in the presence of polyarginine and show that they are composed of 10 nm building blocks, yet diffract like single crystals. We use both bulk magnetic measurements and magnetic induction maps recorded from individual particles using off-axis electron holography to show that each 40 nm particle typically contains a single magnetic domain. The magnetic state is therefore determined primarily by the size of the superstructure and not by the sizes of the constituent sub-units. Our results fundamentally demonstrate the structure - property relationship in a magnetic mesoparticle.
磁铁矿纳米颗粒表现出的磁性能与其尺寸和组织有关,对于依赖其磁状态的应用,它们通常必须是单分散的。然而,形成这样的颗粒仍然是一个挑战。在这里,我们在多聚精氨酸的存在下合成了 40nm 的磁铁矿颗粒,并表明它们由 10nm 的构建块组成,但像单晶一样衍射。我们使用体磁测量和使用离轴电子全息术从单个颗粒记录的磁感应图来表明,每个 40nm 的颗粒通常包含一个单一的磁畴。因此,磁状态主要由超结构的尺寸决定,而不是由组成的亚单位的尺寸决定。我们的结果从根本上证明了磁性介孔颗粒中的结构-性能关系。
J Nanosci Nanotechnol. 2010-12
J Phys Chem B. 2014-10-9
Nanotechnology. 2012-1-11
Nanotechnology. 2012-9-25
Bull Exp Biol Med. 2024-4
Nanomaterials (Basel). 2023-1-13
J Am Chem Soc. 2021-7-28
Materials (Basel). 2021-2-6
Nanomaterials (Basel). 2020-10-13
Angew Chem Int Ed Engl. 2015-4-13
Nat Mater. 2014-2
Nat Mater. 2013-2-3
Beilstein J Nanotechnol. 2010-12-28
Ultramicroscopy. 2011-6-21