Suppr超能文献

毛细管喂食试验用于测量黑腹果蝇的食物摄入量。

The CApillary FEeder Assay Measures Food Intake in Drosophila melanogaster.

作者信息

Diegelmann Soeren, Jansen Annika, Jois Shreyas, Kastenholz Katharina, Velo Escarcena Laura, Strudthoff Nicole, Scholz Henrike

机构信息

Institute of Zoology, Albertus-Magnus University of Cologne;

Institute of Zoology, Albertus-Magnus University of Cologne.

出版信息

J Vis Exp. 2017 Mar 17(121):55024. doi: 10.3791/55024.

Abstract

For most animals, feeding is an essential behavior for securing survival, and it influences development, locomotion, health and reproduction. Ingestion of the right type and quantity of food therefore has a major influence on quality of life. Research on feeding behavior focuses on the underlying processes that ensure actual feeding and unravels the role of factors regulating internal energy homeostasis and the neuronal bases of decision-making. The model organism Drosophila melanogaster, with its great variety of genetically traceable tools for labeling and manipulating single neurons, allows mapping of neuronal networks and identification of molecular signaling cascades involved in the regulation of food intake. This report demonstrates the CApillary FEeder assay (CAFE) and shows how to measure food intake in a group of flies for time spans ranging from hours to days. This easy-to-use assay consists of glass capillaries filled with liquid food that flies can freely access and feed on. Food consumption in the assay is accurately determined using simple measurement tools. Herein we describe step-by-step the method from setup to successful execution of the CAFE assay, and provide practical examples to analyze the food intake of a group of flies under controlled conditions. The reader is guided through possible limitations of the assay, and advantages and disadvantages of the method compared to other feeding assays in D. melanogaster are evaluated.

摘要

对于大多数动物而言,觅食是确保生存的基本行为,并且会影响发育、运动、健康和繁殖。因此,摄入正确类型和数量的食物对生活质量有重大影响。对觅食行为的研究聚焦于确保实际进食的潜在过程,并揭示调节体内能量稳态的因素的作用以及决策的神经基础。模式生物黑腹果蝇拥有大量用于标记和操纵单个神经元的可遗传追踪工具,这使得绘制神经网络以及识别参与食物摄入调节的分子信号级联成为可能。本报告展示了毛细管饲养测定法(CAFE),并说明如何在数小时至数天的时间段内测量一组果蝇的食物摄入量。这种易于使用的测定法由装满液体食物的玻璃毛细管组成,果蝇可以自由获取并进食。使用简单的测量工具就能准确测定测定法中的食物消耗量。在此,我们逐步描述从设置到成功执行CAFE测定法的方法,并提供实际示例以分析在受控条件下一组果蝇的食物摄入量。读者将了解该测定法可能存在的局限性,并评估该方法与黑腹果蝇其他进食测定法相比的优缺点。

相似文献

1
The CApillary FEeder Assay Measures Food Intake in Drosophila melanogaster.
J Vis Exp. 2017 Mar 17(121):55024. doi: 10.3791/55024.
2
Quantifying Drosophila food intake: comparative analysis of current methodology.
Nat Methods. 2014 May;11(5):535-40. doi: 10.1038/nmeth.2899. Epub 2014 Mar 30.
3
Prandiology of Drosophila and the CAFE assay.
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8253-6. doi: 10.1073/pnas.0702726104. Epub 2007 May 9.
5
Simultaneous measurement of sleep and feeding in individual Drosophila.
Nat Protoc. 2017 Nov;12(11):2355-2366. doi: 10.1038/nprot.2017.096. Epub 2017 Oct 12.
8
Regulation of feeding behaviour and locomotor activity by takeout in Drosophila.
J Exp Biol. 2007 Apr;210(Pt 8):1424-34. doi: 10.1242/jeb.02755.
9
Automated monitoring and quantitative analysis of feeding behaviour in Drosophila.
Nat Commun. 2014 Aug 4;5:4560. doi: 10.1038/ncomms5560.
10
Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan.
J Nutr. 2015 Dec;145(12):2789-96. doi: 10.3945/jn.115.222380. Epub 2015 Oct 21.

引用本文的文献

1
as a neurobehavioral model for sex differences in stress response.
Front Behav Neurosci. 2025 Jul 11;19:1581763. doi: 10.3389/fnbeh.2025.1581763. eCollection 2025.
2
Protocol to measure temporal consumption and feeding choices of Drosophila adults using capillaries.
STAR Protoc. 2025 Jul 8;6(3):103931. doi: 10.1016/j.xpro.2025.103931.
4
experimental model to test new antimicrobials: a methodological approach.
Front Microbiol. 2024 Nov 6;15:1478263. doi: 10.3389/fmicb.2024.1478263. eCollection 2024.
5
Mating reconciles fitness and fecundity by switching diet preference in flies.
Nat Commun. 2024 Nov 15;15(1):9912. doi: 10.1038/s41467-024-54369-w.
7
Socialization causes long-lasting behavioral changes.
Sci Rep. 2024 Sep 27;14(1):22302. doi: 10.1038/s41598-024-73218-w.
8
Endogenous coenzyme Q content and exogenous bioavailability in .
Heliyon. 2024 Sep 12;10(18):e37854. doi: 10.1016/j.heliyon.2024.e37854. eCollection 2024 Sep 30.
9
Transiently restricting individual amino acids protects against multiple stressors.
Open Biol. 2024 Aug;14(8):240093. doi: 10.1098/rsob.240093. Epub 2024 Aug 7.
10
Intraspecies interactions of impact biofilm architecture and virulence determinants in childhood dental caries.
mSphere. 2024 Jul 30;9(7):e0077823. doi: 10.1128/msphere.00778-23. Epub 2024 Jul 11.

本文引用的文献

2
A Subset of Serotonergic Neurons Evokes Hunger in Adult Drosophila.
Curr Biol. 2015 Sep 21;25(18):2435-40. doi: 10.1016/j.cub.2015.08.005. Epub 2015 Sep 3.
3
Metabolism: feeding fruit flies.
Nat Methods. 2015 Jun 30;12(7):609-12. doi: 10.1038/nmeth.3443.
5
Automated monitoring and quantitative analysis of feeding behaviour in Drosophila.
Nat Commun. 2014 Aug 4;5:4560. doi: 10.1038/ncomms5560.
6
FLIC: high-throughput, continuous analysis of feeding behaviors in Drosophila.
PLoS One. 2014 Jun 30;9(6):e101107. doi: 10.1371/journal.pone.0101107. eCollection 2014.
7
Feeding regulation in Drosophila.
Curr Opin Neurobiol. 2014 Dec;29:57-63. doi: 10.1016/j.conb.2014.05.008. Epub 2014 Jun 14.
8
Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior.
PLoS One. 2014 Jun 12;9(6):e99732. doi: 10.1371/journal.pone.0099732. eCollection 2014.
9
Neurobiology of food intake in health and disease.
Nat Rev Neurosci. 2014 Jun;15(6):367-78. doi: 10.1038/nrn3745.
10
Octopamine indirectly affects proboscis extension response habituation in Drosophila melanogaster by controlling sucrose responsiveness.
J Insect Physiol. 2014 Oct;69:107-17. doi: 10.1016/j.jinsphys.2014.03.011. Epub 2014 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验