Suppr超能文献

产甲烷生物阴极微生物群落的发展与细菌的作用。

Methanogenic Biocathode Microbial Community Development and the Role of Bacteria.

机构信息

School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States.

出版信息

Environ Sci Technol. 2017 May 2;51(9):5306-5316. doi: 10.1021/acs.est.6b04112. Epub 2017 Apr 11.

Abstract

The cathode microbial community of a methanogenic bioelectrochemical system (BES) is key to the efficient conversion of carbon dioxide (CO) to methane (CH) with application to biogas upgrading. The objective of this study was to compare the performance and microbial community composition of a biocathode inoculated with a mixed methanogenic (MM) culture to a biocathode inoculated with an enriched hydrogenotrophic methanogenic (EHM) culture, developed from the MM culture following pre-enrichment with H and CO as the only externally supplied electron donor and carbon source, respectively. Using an adjacent Ag/AgCl reference electrode, biocathode potential was poised at -0.8 V (versus SHE) using a potentiostat, with the bioanode acting as the counter electrode. When normalized to cathode biofilm biomass, the methane production in the MM- and EHM-biocathode was 0.153 ± 0.010 and 0.586 ± 0.029 mmol CH/mg biomass-day, respectively. This study showed that H/CO pre-enriched inoculum enhanced biocathode CH production, although the archaeal communities in both biocathodes converged primarily (86-100%) on a phylotype closely related to Methanobrevibacter arboriphilus. The bacterial community of the MM-biocathode was similar to that of the MM inoculum but was enriched in Spirochaetes and other nonexoelectrogenic, fermentative Bacteria. In contrast, the EHM-biocathode bacterial community was enriched in Proteobacteria, exoelectrogens, and putative producers of electron shuttle mediators. Similar biomass levels were detected in the MM- and EHM-biocathodes. Thus, although the archaeal communities were similar in the two biocathodes, the difference in bacterial community composition was likely responsible for the 3.8-fold larger CH production rate observed in the EHM-biocathode. Roles for abundant OTUs identified in the biofilm and inoculum cultures were highlighted on the basis of previous reports.

摘要

产甲烷生物电化学系统 (BES) 的阴极微生物群落对于将二氧化碳 (CO) 高效转化为甲烷 (CH) 以用于沼气升级至关重要。本研究的目的是比较接种混合产甲烷 (MM) 培养物的生物阴极和接种从 MM 培养物通过预富集以 H 和 CO 作为唯一外部供应的电子供体和碳源分别开发的富氢产甲烷 (EHM) 培养物的生物阴极的性能和微生物群落组成。使用相邻的 Ag/AgCl 参比电极,通过使用恒电位仪将生物阴极电势稳定在-0.8 V(相对于 SHE),其中生物阳极充当对电极。当归一化为阴极生物膜生物量时,MM-和 EHM-生物阴极的甲烷产量分别为 0.153±0.010 和 0.586±0.029 mmol CH/mg 生物质-天。本研究表明,H/CO 预富集接种物增强了生物阴极 CH 的产生,尽管两种生物阴极中的古菌群落主要(86-100%)聚集在与 Methanobrevibacter arboriphilus 密切相关的生物型上。MM-生物阴极的细菌群落与 MM 接种物相似,但富含螺旋体和其他非产电、发酵细菌。相比之下,EHM-生物阴极的细菌群落富含变形菌、外电子体和可能的电子穿梭介体产生菌。在 MM-和 EHM-生物阴极中检测到相似的生物量水平。因此,尽管两种生物阴极中的古菌群落相似,但细菌群落组成的差异可能是导致在 EHM-生物阴极中观察到 3.8 倍更大的 CH 产生速率的原因。基于先前的报告,突出了生物膜和接种物培养物中丰富的 OTU 的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验