Chen Huaihou, Cao Guanqun, Cohen Ronald A
Department of Biostatistics, University of Florida, 2004 Mowry Road, Gainesville, FL 32611,
Department of Mathematics and Statistics, Auburn University, 218 B Parker Hall, Auburn, AL 36849, USA.
Biostatistics. 2017 Apr 1;18(2):386-401. doi: 10.1093/biostatistics/kxw052.
Univariate semiparametric methods are often used in modeling nonlinear age trajectories for imaging data, which may result in efficiency loss and lower power for identifying important age-related effects that exist in the data. As observed in multiple neuroimaging studies, age trajectories show similar nonlinear patterns for the left and right corresponding regions and for the different parts of a big organ such as the corpus callosum. To incorporate the spatial similarity information without assuming spatial smoothness, we propose a multivariate semiparametric regression model with a spatial similarity penalty, which constrains the variation of the age trajectories among similar regions. The proposed method is applicable to both cross-sectional and longitudinal region-level imaging data. We show the asymptotic rates for the bias and covariance functions of the proposed estimator and its asymptotic normality. Our simulation studies demonstrate that by borrowing information from similar regions, the proposed spatial similarity method improves the efficiency remarkably. We apply the proposed method to two neuroimaging data examples. The results reveal that accounting for the spatial similarity leads to more accurate estimators and better functional clustering results for visualizing brain atrophy pattern.Functional clustering; Longitudinal magnetic resonance imaging (MRI); Penalized B-splines; Region of interest (ROI); Spatial penalty.
单变量半参数方法常用于对成像数据的非线性年龄轨迹进行建模,这可能会导致效率损失,以及在识别数据中存在的重要年龄相关效应时降低检验功效。正如在多项神经影像学研究中所观察到的,年龄轨迹在左右对应区域以及诸如胼胝体等大器官的不同部分呈现出相似的非线性模式。为了在不假设空间平滑性的情况下纳入空间相似性信息,我们提出了一种具有空间相似性惩罚的多变量半参数回归模型,该模型限制了相似区域间年龄轨迹的变化。所提出的方法适用于横断面和纵向区域层面的成像数据。我们展示了所提出估计量的偏差和协方差函数的渐近速率及其渐近正态性。我们的模拟研究表明,通过从相似区域借用信息,所提出的空间相似性方法显著提高了效率。我们将所提出的方法应用于两个神经影像学数据示例。结果表明,考虑空间相似性会带来更准确的估计量以及更好的功能聚类结果,以可视化脑萎缩模式。功能聚类;纵向磁共振成像(MRI);惩罚B样条;感兴趣区域(ROI);空间惩罚。