Suppr超能文献

通过神经影像学应用解决预测模型中的混杂因素

Addressing Confounding in Predictive Models with an Application to Neuroimaging.

作者信息

Linn Kristin A, Gaonkar Bilwaj, Doshi Jimit, Davatzikos Christos, Shinohara Russell T

出版信息

Int J Biostat. 2016 May 1;12(1):31-44. doi: 10.1515/ijb-2015-0030.

Abstract

Understanding structural changes in the brain that are caused by a particular disease is a major goal of neuroimaging research. Multivariate pattern analysis (MVPA) comprises a collection of tools that can be used to understand complex disease efxcfects across the brain. We discuss several important issues that must be considered when analyzing data from neuroimaging studies using MVPA. In particular, we focus on the consequences of confounding by non-imaging variables such as age and sex on the results of MVPA. After reviewing current practice to address confounding in neuroimaging studies, we propose an alternative approach based on inverse probability weighting. Although the proposed method is motivated by neuroimaging applications, it is broadly applicable to many problems in machine learning and predictive modeling. We demonstrate the advantages of our approach on simulated and real data examples.

摘要

了解由特定疾病引起的大脑结构变化是神经影像学研究的一个主要目标。多变量模式分析(MVPA)包含一系列工具,可用于理解大脑中复杂的疾病影响。我们讨论了在使用MVPA分析神经影像学研究数据时必须考虑的几个重要问题。特别是,我们关注年龄和性别等非成像变量的混杂对MVPA结果的影响。在回顾了当前解决神经影像学研究中混杂问题的实践后,我们提出了一种基于逆概率加权的替代方法。尽管所提出的方法是由神经影像学应用推动的,但它广泛适用于机器学习和预测建模中的许多问题。我们在模拟和真实数据示例上展示了我们方法的优势。

相似文献

1
Addressing Confounding in Predictive Models with an Application to Neuroimaging.
Int J Biostat. 2016 May 1;12(1):31-44. doi: 10.1515/ijb-2015-0030.
2
Group-regularized individual prediction: theory and application to pain.
Neuroimage. 2017 Jan 15;145(Pt B):274-287. doi: 10.1016/j.neuroimage.2015.10.074. Epub 2015 Nov 17.
3
Atlas-Based Classification Algorithms for Identification of Informative Brain Regions in fMRI Data.
Neuroinformatics. 2020 Apr;18(2):219-236. doi: 10.1007/s12021-019-09435-w.
4
Application of machine learning classification for structural brain MRI in mood disorders: Critical review from a clinical perspective.
Prog Neuropsychopharmacol Biol Psychiatry. 2018 Jan 3;80(Pt B):71-80. doi: 10.1016/j.pnpbp.2017.06.024. Epub 2017 Jun 23.
5
Structural neuroimaging as clinical predictor: A review of machine learning applications.
Neuroimage Clin. 2018 Aug 10;20:506-522. doi: 10.1016/j.nicl.2018.08.019. eCollection 2018.
7
Identifying neuroanatomical signatures of anorexia nervosa: a multivariate machine learning approach.
Psychol Med. 2015 Oct;45(13):2805-12. doi: 10.1017/S0033291715000768. Epub 2015 May 20.
9
Dissecting Psychiatric Heterogeneity and Comorbidity with Core Region-Based Machine Learning.
Neurosci Bull. 2023 Aug;39(8):1309-1326. doi: 10.1007/s12264-023-01057-2. Epub 2023 Apr 24.

引用本文的文献

2
Interpreting Neuroscientific Evidence in the Legal Domain: Do the Stereotypes Come In?
Integr Psychol Behav Sci. 2024 Sep;58(3):946-962. doi: 10.1007/s12124-024-09847-7. Epub 2024 May 21.
3
4
Brain-phenotype models fail for individuals who defy sample stereotypes.
Nature. 2022 Sep;609(7925):109-118. doi: 10.1038/s41586-022-05118-w. Epub 2022 Aug 24.
5
Penalized decomposition using residuals (PeDecURe) for feature extraction in the presence of nuisance variables.
Biostatistics. 2023 Jul 14;24(3):653-668. doi: 10.1093/biostatistics/kxac031.
6
Functional Connectome-Based Predictive Modeling in Autism.
Biol Psychiatry. 2022 Oct 15;92(8):626-642. doi: 10.1016/j.biopsych.2022.04.008. Epub 2022 Apr 25.
8
Population heterogeneity in clinical cohorts affects the predictive accuracy of brain imaging.
PLoS Biol. 2022 Apr 29;20(4):e3001627. doi: 10.1371/journal.pbio.3001627. eCollection 2022 Apr.
10
Brain-Age Prediction Using Shallow Machine Learning: Predictive Analytics Competition 2019.
Front Psychiatry. 2020 Dec 2;11:604478. doi: 10.3389/fpsyt.2020.604478. eCollection 2020.

本文引用的文献

1
Multi-atlas skull-stripping.
Acad Radiol. 2013 Dec;20(12):1566-76. doi: 10.1016/j.acra.2013.09.010.
4
Default mode network activity in schizophrenia studied at resting state using probabilistic ICA.
Schizophr Res. 2012 Jul;138(2-3):143-9. doi: 10.1016/j.schres.2012.01.036. Epub 2012 May 10.
5
Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review.
Neurosci Biobehav Rev. 2012 Apr;36(4):1140-52. doi: 10.1016/j.neubiorev.2012.01.004. Epub 2012 Jan 28.
6
Multivariate pattern classification of gray matter pathology in multiple sclerosis.
Neuroimage. 2012 Mar;60(1):400-8. doi: 10.1016/j.neuroimage.2011.12.070. Epub 2012 Jan 5.
7
The Relevance Voxel Machine (RVoxM): a Bayesian method for image-based prediction.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):99-106. doi: 10.1007/978-3-642-23626-6_13.
8
Joint modeling of anatomical and functional connectivity for population studies.
IEEE Trans Med Imaging. 2012 Feb;31(2):164-82. doi: 10.1109/TMI.2011.2166083. Epub 2011 Aug 30.
9
Age correction in dementia--matching to a healthy brain.
PLoS One. 2011;6(7):e22193. doi: 10.1371/journal.pone.0022193. Epub 2011 Jul 29.
10
An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies.
Multivariate Behav Res. 2011 May;46(3):399-424. doi: 10.1080/00273171.2011.568786. Epub 2011 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验