Westmoreland Dana E, Feliciano Patricia R, Kang Gyunghoon, Cui Chang, Kim Albert, Stubbe JoAnne, Nocera Daniel G, Drennan Catherine L
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139.
Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139.
bioRxiv. 2024 Oct 10:2024.10.09.617422. doi: 10.1101/2024.10.09.617422.
Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides using radical-based chemistry. For class Ia RNRs, the radical species is stored in a separate subunit (β2) from the subunit housing the active site (α2), requiring the formation of a short-lived α2β2 complex and long-range radical transfer (RT). RT occurs via proton-coupled electron transfer (PCET) over a long distance (~32-Å) and involves the formation and decay of multiple amino acid radical species. Here, we use cryogenic-electron microscopy and a mechanism-based inhibitor 2'-azido-2'-deoxycytidine-5'-diphosphate (NCDP) to trap a wild-type α2β2 complex of class Ia RNR. We find that one α subunit has turned over and that the other is trapped, bound to β in a mid-turnover state. Instead of NCDP in the active site, forward RT has resulted in N loss, migration of the third nitrogen from the ribose C2' to C3' positions, and attachment of this nitrogen to the sulfur of cysteine-225. To the best of our knowledge, this is the first time an inhibitor has been visualized as an adduct to an RNR. Additionally, this structure reveals the positions of PCET residues following forward RT, complementing the previous structure that depicted a pre-turnover PCET pathway and suggesting how PCET is gated at the α-β interface. This NCDP-trapped structure is also of sufficient resolution (2.6 Å) to visualize water molecules, allowing us to evaluate the proposal that water molecules are proton acceptors and donors as part of the PCET process.
核糖核苷酸还原酶(RNRs)利用基于自由基的化学方法将核糖核苷酸还原为脱氧核糖核苷酸。对于I类a型RNRs,自由基物种存储在与包含活性位点的亚基(α2)分开的亚基(β2)中,这需要形成一个短寿命的α2β2复合物并进行长程自由基转移(RT)。RT通过质子耦合电子转移(PCET)在长距离(约32埃)上发生,涉及多个氨基酸自由基物种的形成和衰减。在这里,我们使用低温电子显微镜和一种基于机制的抑制剂2'-叠氮基-2'-脱氧胞苷-5'-二磷酸(NCDP)来捕获I类a型RNR的野生型α2β2复合物。我们发现一个α亚基已经发生了周转,而另一个则被捕获,在周转中期与β结合。由于正向RT,活性位点中不是NCDP,而是导致了N的损失,第三个氮从核糖C2'迁移到C3'位置,并将该氮连接到半胱氨酸-225的硫上。据我们所知,这是首次将抑制剂可视化为与RNR的加合物。此外,该结构揭示了正向RT后PCET残基的位置,补充了之前描绘周转前PCET途径的结构,并暗示了PCET在α-β界面处是如何被调控的。这个被NCDP捕获的结构也具有足够的分辨率(2.6埃)来可视化水分子,使我们能够评估水分子作为PCET过程一部分的质子受体和供体的提议。