Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA.; Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA.; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA.; Berkeley Sensor and Actuator Center, University of California, Berkeley, Berkeley, CA 94720, USA.; Murata Manufacturing Co. Ltd., Nagaokakyo, Kyoto 617-8555, Japan.
Sci Adv. 2017 Mar 24;3(3):e1602557. doi: 10.1126/sciadv.1602557. eCollection 2017 Mar.
There is great interest in developing a low-power gas sensing technology that can sensitively and selectively quantify the chemical composition of a target atmosphere. Nanomaterials have emerged as extremely promising candidates for this technology due to their inherent low-dimensional nature and high surface-to-volume ratio. Among these, nanoscale silicon is of great interest because pristine silicon is largely inert on its own in the context of gas sensing, unless functionalized with an appropriate gas-sensitive material. We report a chemical-sensitive field-effect transistor (CS-FET) platform based on 3.5-nm-thin silicon channel transistors. Using industry-compatible processing techniques, the conventional electrically active gate stack is replaced by an ultrathin chemical-sensitive layer that is electrically nonconducting and coupled to the 3.5-nm-thin silicon channel. We demonstrate a low-power, sensitive, and selective multiplexed gas sensing technology using this platform by detecting HS, H, and NO at room temperature for environment, health, and safety in the oil and gas industry, offering significant advantages over existing technology. Moreover, the system described here can be readily integrated with mobile electronics for distributed sensor networks in environmental pollution mapping and personal air-quality monitors.
人们对于开发能够灵敏且选择性地定量分析目标大气化学成分的低功耗气体传感技术有着浓厚的兴趣。由于纳米材料具有固有低维性质和高表面积与体积比,因此它们成为这种技术极具前景的候选材料。在这些纳米材料中,纳米级硅非常引人注目,因为在气体传感方面,原始硅本身在很大程度上是惰性的,除非与适当的气体敏感材料功能化。我们报告了一种基于 3.5nm 厚硅通道晶体管的化学敏感场效应晶体管 (CS-FET) 平台。使用与工业兼容的处理技术,我们用超薄的化学敏感层取代了传统的电活性栅堆叠,该敏感层是电不导电的,并与 3.5nm 厚的硅通道耦合。我们通过在室温下使用该平台检测 HS、H 和 NO 来展示一种低功耗、灵敏且选择性的多路复用气体传感技术,这为石油和天然气行业的环境、健康和安全提供了显著优于现有技术的优势。此外,这里描述的系统可以与移动电子设备轻松集成,用于环境污染物测绘和个人空气质量监测的分布式传感器网络。